前面讲解了GPT、BERT相关内容,这一篇记录剩下GPT-2、GPT-3、GPT-4。
五、GPT-2
PDF: Language Models are Unsupervised Multitask Learners
5.1 背景及思想
GPT-1提出不久就被Google提出的BERT采用更大的模型更大的数据集给超过了,前面提到GPT采用的是Transformer的解码器结构,而BERT采用的是编码器结构,那在GPT的基础上,肯定不能选择换回编码器结构,不然就承认被超越了,前面也提到GPT是预测下一个词,其保证条件概率最大化,这个相比于BERT能看到前后信息而言难度更大,但相应的其天花板肯定也越高,所以最直接的一个想法就是选择一个更大的数据集,来训练一个更大的GPT模型,但直接暴力解决,创新度肯定不够,因此还强调了Zero-shot作为一个贡献点。
5.2 相关内容
大体内容上和GPT类似,这里主要不同点在于Zero-shot。
- zero-shot
前面GPT是先在一个大数据集上训练好模型,然后再在下游子任务上进行微调,这里要把子任务通过构造成句子,这就会引入一些分割符,在微调训练的过程中会认识这些符号,但如果采用Zero-shot,开始训练好的模型不一定能认识这些符号啊,那关键就在于如何处理这之间的差异。其实论文中采用的方法就是Prompt,也就是提示工程(可参考MAML),保证输入尽可能的在训练过程中都见过。如:
英语翻译成法语,那构造变成: (translate to french, english text, french text)
还有阅读理解任务,构造变成:(answer the question, document, question, answer).
- 训练数据
采用的是Reddit数据集,是一个新闻聚合网页,作者从里面挑选karma数量大于3的新闻作为训练数据,karma可以简单理解成点赞数。
- 网络结构
结构上和GPT类似,只是解码器层数增加了,训练了几个不同的版本
5.4 效果
- 和zero-shot的一些方法进行比较
采用一个这么大的模型去和原先的方法比,效果肯定要好不少。哈哈哈
- 几个版本在不同任务上的表现
估计这里想展示的是随着模型的增大,效果还在提升
六、GPT-3
PDF: Language Models are Few-Shot Learners
1 背景及思想
GPT-2追求的是Zero-shot,也就是零样本推理,但准确度上肯定没有在子任务上微调的那么好,GPT-3主要强调Few shot,即在推理时选择少量样本一起输入进去作为参考,其效果会更好,注意这里不是把样本丢进去微调,而是作为输入,不会去更改模型的权重。
下图比较了zero-shot one-shot few-shot和微调的区别,Zero-shot、one-shot和few-shot是上下文学习,不会改变权重参数。
2 相关内容
GPT-3文献是一篇技术报告,有70多页,大部分展示的是实验结果。这里主要介绍下zero-shot、one-shot和few-shot,以及训练的数据
2.1 Few-shot、One-shot、Zero-shot
这几个的主要区别在于输入时提供的样本数量,用于推理时进行上下文学习。
好处是不需要重新训练,但是没法保存一个样本上下文学习的特征,每次都要重新输入,而且如果有一个好的数据集,一次可能也输入不了那么多。
2.2 训练数据
从以下数据集按不同权重进行抽样,对于Common Crawl数据集做了一定的过滤,措施包括保留正类和去重。
- 保留正类
由于Common Crawl质量参差不齐,这里是将GPT-2的数据集Reddit作为正类,然后Common Crawl作为负类训练了一个二分类模型,对Common Crawl中预测结果偏正类的提取出来 - 去重
采用lsh算法对提取的数据进行去重,lsh常用于判断两个大型词集合之间的相似度
3 网络结构
整体结构上和GPT-2类似,只是层数和宽度上进行了调整,训练了以下几个版本,GPT-3相比于GPT-2要更加宽一些。
4 效果
-
few-shot one-shot zero-shot的效果比较
-
训练收敛次数和计算量的关系
要使得训练效果线性增加,其计算量需要成倍数增加,那要求的数据量也会更大
-
和Zero-shot SOTA比较
-
翻译应用
-
可能存在的问题
里面作者例举了一些可能会存在的一些问题,比如可能会散布假消息、由于训练数据集问题可能存在种族、性别、宗教问题,当然还有能耗比较大。
这里截取不同地区的图片,可以看出地域还是存在很大差别,其他还有很多图表可以看原文。
七、GPT-4
1 背景及思想
前面的GPT模型主要是处理文本,GPT4是一个多模态模型,输入可以是文本或者图片,还可以处理视频。当然近期还推出了GPT4o,在逻辑处理上更加强悍。
2 相关内容
GPT4论文也是一篇长达99页的技术报告,里面大多数是一些实验结果,看起来好像讲了很多,但看完好像又没啥,这里主要提以下几点
-
RLHF
预训练好的模型有时候回答会和人想要的结果相差较大,采用RLHF对模型进行了微调。RLHF的功能主要是对模型进行控制,是模型能更好地按照人的意图进行回答。
-
准测预测模型训练结果
在小规模的计算成本下,可以预估成本扩大后最终训练完时Loss。
-
支持图像输入
还有更多的例子可参考:https://openai.com/index/gpt-4-research/
3 效果
-
考试
在各种考试上相比于GPT3.5提升不少,比如通过司法考试,还排名靠前10%
-
在不同语言上表现
-
分类
-
问答
八、小结
最开始是Transformer,引入自注意力机制处理文本,并提出编码器-解码器结构,GPT可以看成在其基础上跳跃了一大步,借助Transformer的解码器,在一个大数据集上训练好模型,然后再在下游任务上进行微调,但不久后被BERT采用编码器结构给超越了,因此GPT2以后就是把模型做大做强,由于GPT选择是编码器,只能用已知数据去预测,其训练难度更大,当然对应的效果肯定也会越好,GPT3到GPT4是模型进一步扩大。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓