开源模型
说到开源模型就得提起huggingface
它是专注于人工智能模型的开源社区,里面提供了大量的预训练模型和数据集。当然上面也提供了一些可以直接调用大模型,如聊天、绘画等功能。
下图是 google 热度趋势,一直处于上升的趋势。
目前huggingface上已经集集了1,133,267 个开源模型。
训练方案
全模型训练
从头开始训练一个模型,所有模型的参数都会被初始化并根据训练数据进行更新。最初使用的就是直接通过transformers 对模型训练。
- Ollama+Llama3.2
- Python 3.8+
- PyTorch
- Hugging Face Transformers
- Datasets
- CUDA
from transformers import LlamaForCausalLM, AutoTokenizer, Trainer, TrainingArguments, AutoModelForCausalLM, \
AutoTokenizer
from datasets import load_dataset
# 加载模型和分词器
model_name = "Llama-3.2-1B" # 替换为你的模型名称
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, legacy=False)
# 检查词汇文件路径
print(type(tokenizer))
# 确保分词器有 pad_token
if tokenizer.pad_token is None:
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
model.resize_token_embeddings(len(tokenizer))
# 加载数据集
dataset = load_dataset("json", data_files="training_data.json")
........
训练后的模型会非常的大,比如原本 2G 的模型,完全训练后会有 4G 多,当然这已经是删除了检查点后的大小。比如量化参数或压缩模型等手段来缩小模型。
微调模型
在预训练模型的基础上,使用特定任务的数据对模型进行进一步训练,以适应新的任务。
一般微调模型会使用 Lora,除了 LoRA,Adapter Layers、Freeze、Prefix Tuning、Prompt Tuning 、BitFit及UniPELT 都是类似的微调技术。
训练模型
我本地环境是 Windows 11,因为机器上有NVIDlA 显卡所以直接在 Windows 上训练模型。
我选择的是 Github 34.6k star 的 LLaMA-Factory 来微调Qwen2-0.5B模型,这个模型比较小,
以下是详细的安装与使用步骤:
1. 环境准备
1.1 安装Python
安装Python 3.8或更高版本。你可以从Python官网下载并安装。
1.2 安装CUDA
从NVIDIA官网下载并安装适合显卡的CUDA版本。
nvidia-smi
这里支持的 CUDA<=12.6 就可以
可以在 CUDA 里找到 12.6.0 的版本
nvcc -V
说明已经安装成功了
2. 安装LLaMA-Factory
2.1 克隆LLaMA-Factory仓库
打开命令行工具(如PowerShell或CMD),运行以下命令克隆LLaMA-Factory仓库:
git clone https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
2.2 创建虚拟环境(可选)
虽然是可行,一般初次安装可能会把环境搞坏,所以为了隔离环境,建议创建一个虚拟环境,如果搞坏了可以创建个新的虚拟环境:
python -m venv llama_factory_env
.\llama_factory_env\Scripts\activate
2.3 安装依赖
在虚拟环境中安装所需的Python依赖:
pip install -r requirements.txt
安装一般来说就是下载不了依赖的问题,
另外还有一个比较需要 注意 的问题就是,llamafactory-cli webui常常会报以下错,webui 打不开
RuntimeError: Failed to import trl.trainer.ppo_config because of the following error (look up to see its traceback):
No module named 'tyro'
怎么重装安装都没有用,后面在 github issues 里找到了一哥们的解决办法
pip install tyro==0.8.14
最后启动图形界面
llamafactory-cli webui
3. 下载Qwen2-0.5B模型
3.1 下载模型
你可以从Hugging Face或其他模型仓库下载Qwen2-0.5B模型。假设你已经下载了模型文件并将其放在models
目录下。
4. 配置LLaMA-Factory
4.1 配置文件
可以直接在页面上配置参数,一般来说默认就可以。
这里有比较需要注意的地方就是如果按页面上默认的配置训练出来的模型没有效果,就可以尝试调整一些参数
大家也可以把自己 ok 的训练参数保存下来,如下图
以下就是 yaml 文件内容
top.booster: auto
top.checkpoint_path:
- train_2024-11-20-16-03-49 top.finetuning_type: lora top.model_name: Qwen2-0.5B top.quantization_bit: none top.quantization_method: bitsandbytes top.rope_scaling: none top.template: default train.additional_target: '' train.badam_mode: layer train.badam_switch_interval: 50 train.badam_switch_mode: ascending train.badam_update_ratio: 0.05 train.batch_size: 2 train.compute_type: fp16 train.create_new_adapter: false train.cutoff_len: 1024 train.dataset:
- identity train.dataset_dir: data train.ds_offload: false train.ds_stage: none train.extra_args: '{"optim": "adamw_torch"}' train.freeze_extra_modules: '' train.freeze_trainable_layers: 2 train.freeze_trainable_modules: all train.galore_rank: 16 train.galore_scale: 0.25 train.galore_target: all train.galore_update_interval: 200 train.gradient_accumulation_steps: 16 train.learning_rate: 1e-4 train.logging_steps: 5 train.lora_alpha: 32 train.lora_dropout: 0 train.lora_rank: 16 train.lora_target: '' train.loraplus_lr_ratio: 0 train.lr_scheduler_type: cosine train.mask_history: false train.max_grad_norm: '1.0' train.max_samples: '100000' train.neat_packing: false train.neftune_alpha: 0 train.num_train_epochs: '100.0' train.packing: false train.ppo_score_norm: false train.ppo_whiten_rewards: false train.pref_beta: 0.1 train.pref_ftx: 0 train.pref_loss: sigmoid train.report_to: false train.resize_vocab: false train.reward_model: null train.save_steps: 100 train.shift_attn: false train.train_on_prompt: false train.training_stage: Supervised Fine-Tuning train.use_badam: false train.use_dora: false train.use_galore: false train.use_llama_pro: false train.use_pissa: false train.use_rslora: false train.val_size: 0 train.warmup_steps: 0
4.2 数据准备
将训练数据放在data
目录下或直接使用 data 目录下由LLaMA-Factory 提供的示例训练数据,需要把示例数据中的变量替换成自己的内容。
5. 开始微调
5.1 启动微调
在图形界面中,点击“开始训练”按钮,LLaMA-Factory将开始使用LoRA方法微调Qwen2-0.5B模型。
5.2 监控训练过程
你可以在图形界面中实时监控训练过程,查看损失、学习率等指标。
训练时触发GPU的占用
6. 使用微调后的模型
6.1 保存模型
训练完成后,微调后的模型将保存在输出目录里,使用时直接在检查点路径里选择,文件命名是以当时训练的时间来命名
6.2 使用微调后的模型
直接使用LLaMA-Factory 图形界面里的 "Chat"来验证微调后的效果
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓