NHANES数据库中怎么提取咖啡数据呀?

“在 NHANES 2007-2018 的所有部分,两次 24 小时饮食回忆访谈中都报告了咖啡摄入量。第一次饮食回忆访谈是面对面进行的,第二次访谈是在 3-10 天后通过电话进行的。美国农业部营养膳食来源数据库用于识别咖啡摄入量,咖啡食品代码中的前三个数字是“921”。在这项研究中,一杯咖啡等于 6 盎司或 170 克。我们使用两次 24 小时召回的平均咖啡摄入量进行这些分析。我们将咖啡饮料分为两类:含咖啡因和不含咖啡因。”这个是怎么提取的呀?不知道咖啡的数据在哪个板块,没有找到相应的代码,怎么用R提取呀?

在R语言中分析Nhanes(全国健康和营养检查研究)数据库中的血脂数据,通常需要几个步骤: 1. **安装必要的库**:首先确保已经安装了`tidyverse`(包括`dplyr`, `ggplot2`, `readr`等)和`NHANES`包,用于处理NHANES数据。可以使用`install.packages()`命令安装它们。 ```R install.packages(c("tidyverse", "NHANES")) ``` 2. **加载数据**:使用`NHANES::load_nhanes()`函数从数据库中导入数据集。例如,如果你感兴趣的是成年人的数据,你可以加载特定年份的数据,并选择相关的血脂变量如`serum_chol`(血清胆固醇)和`triglycerides`(甘油三酯)。 ```R library(NHANES) nhanes_data <- load_nhanes(year = c("2015-2016"), data_type = "survey", variable = c("serum_chol", "triglycerides")) ``` 3. **数据清洗**:检查并处理缺失值、异常值和重复数据。可以使用`dplyr`中的`filter()`, `select()`, 和 `na.omit()` 等函数。 ```R nhanes_data_clean <- nhanes_data %>% filter(!is.na(serum_chol) & !is.na(triglycerides)) %>% distinct() ``` 4. **描述性统计**:对血脂变量进行描述性统计分析,了解其基本分布情况。 ```R summary(nhanes_data_clean[, c("serum_chol", "triglycerides")]) ``` 5. **探索性数据分析**:创建散点图或直方图,分析两个血脂指标之间的关联,以及与其他变量的关系(如果有其他感兴趣的协变量)。 ```R ggplot(nhanes_data_clean, aes(x = serum_chol, y = triglycerides)) + geom_point() ``` 6. **建立模型**:如果想要进行更深入的统计建模,比如线性回归分析,可以选择血脂作为因变量,其他特征作为自变量。 ```R model <- lm(triglycerides ~ serum_chol + age + sex, data = nhanes_data_clean) summary(model) ``` 7. **结果解读与报告**:解释模型的结果,比如系数的意义,p值,以及是否存在显著的相关性或预测能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值