新的饮食指标,你可听过?星球饮食指数 | NHANES数据库周报

NHANES挖掘培训班来啦,就在4.20-21!

郑老师团队2024年NHANES公共数据库挖掘培训班,由浅入深,零基础可学,欢迎报名!

美国国家健康和营养检查调查(NHANES)是一项旨在评估美国成人和儿童健康和营养状况的研究计划。该调查的独特之处在于它结合了访谈和体格检查。由美国疾病控制和预防中心(CDC)负责为国家提供健康统计数据。

NHANES计划始于20世纪60年代初,并作为一系列针对不同人口群体或健康主题的调查进行。自1999年以来,对美国的人口健康状况进行了更为定期的调查。每次调查中,来自美国约3000个县中30个选定县的约10000名参与者被要求在移动检查中心(MEC)参加家庭访谈、随后的身体检查和实验室测试。

NHANES访谈包括人口统计,社会经济,饮食和健康相关问题。检查部分包括医疗,牙科和生理测量,以及由训练有素的医务人员进行的实验室测试。

62cbc019f10859d0e156185a78673be7.jpeg

一、2024年NHANES文献预览

本周PubMed数据库“标题/摘要:NHANES”搜索发现,共发表110篇NHANES论文。其中9篇一区,29篇二区

1.外国学者文章介绍(一)

f6390e90e276c93ec4be56122faaf083.png

文章题目:美国膳食质量和膳食温室气体排放:星球健康饮食指数、健康饮食指数-2015的比较,以及预防高血压的饮食方法

研究背景:星球健康饮食指数(PHDI)衡量人们是否遵守EAT-Lancet委员会提出的饮食模式,该委员会将健康和可持续性目标结合起来。有必要了解PHDI得分如何与饮食温室气体排放(GHGE)相关,以及这与既定饮食建议得分的碳足迹有何不同。本研究的目的是比较PHDI、健康饮食指数-2015 (HEI-2015)和停止高血压的饮食方法(DASH)与(a)饮食GHGE的关系,以及检查PHDI食物成分对饮食GHGE的影响。

数据来源:我们使用来自食品召回对环境影响数据库的生命周期评估数据进行营养和饮食研究,计算了2015-2016年和2017-2018年国家健康与营养检查调查(NHANES)周期8,128名成年参与者的平均膳食GHGE。

方法:使用泊松回归估计(a)饮食评分的五分位数和(b)标准化饮食指数z评分与PHDI、HEI-2015和DASH评分的膳食GHGE的相关性。在二次分析中,我们使用泊松回归来评估个体PHDI成分评分对膳食GHGE的影响。

结果:我们发现,在这三个指标上较高的膳食质量与较低的膳食GHGE相关。PHDI [-0.4, 95% CI (-0.5, -0.3) kg CO 2 当量]和DASH [-0.5, (-0.4, -0.6) kg CO 2 当量]与HEI-2015 [-0.2, (-0.2, -0.3) kg CO 2 当量]的饲粮质量-饲粮GHGE关系的大小大于HEI-2015 [-0.2, (-0.2, -0.3) kg CO 2 当量]。在检查PHDI成分得分时,我们发现与饮食相关的温室气体排放主要由红肉和加工肉类的摄入驱动。

结论:改善饮食质量有可能降低美国饮食对碳排放的影响。今后促进健康、可持续饮食的努力可以应用已建立的DASH指南的建议以及PHDI提供的新指南,以增加其环境效益。

8b760a8af91624acdeea440ab68ee5e1.png

2.外国学者文章介绍(二)

aae8709394f53b8da4815770cc5f0381.png

文章题目:2017-2020年全国健康与营养检查调查(NHANES)中儿童和青少年的金属混合物与口腔健康

研究目的:龋齿是人类最常见的非传染性疾病,尽管牙齿是由微量元素组成的坚硬基质,但人们对环境金属的作用知之甚少。我们在美国儿童和青少年的代表性样本中进行了一项环境金属与龋齿的客观评估和口腔健康的主观评估之间关系的横断面研究。

数据来源:数据来自国家健康和营养检查调查(NHANES) 2017年至2020年3月的大流行前数据文件。

方法:为了解释金属混合物,我们使用加权分位数和(WQS)回归来估计血液和尿液中多种微量元素对口腔疾病结局的联合影响。

结果:血液金属混合物指数与32% (95% CI: 1.11, 1.56)的表面腐蚀风险增加相关,而尿液金属混合物指数与106% (RR = 2.06 (95% CI = 1.58, 2.70)的龋风险增加相关。在血液和尿液中,汞(Hg)对混合指数的贡献最大,其次是铅(Pb)。WQS血金属混合物指数也与较差的自评口腔健康显著相关,尽管相关性不如客观口腔疾病测量的强,RR (95% CI) = 1.04(1.02, 1.07)。

结论:在美国儿童和青少年中,增加接触金属混合物与较差的客观和主观口腔健康结果显著相关。这些是首次发现金属混合物是导致口腔健康状况不佳的重要因素。

65d096cfd9d2b300652bef1834bc5a8c.png

3.外国学者文章介绍(三)

9be70eb8709daeb4fad133414533c49d.png

文章题目:高血压识别和管理的当前趋势:根据2017年ACC/AHA高血压指南,来自国家健康和营养检查调查(NHANES)的见解

研究背景:高血压是一个全球性的健康问题,与心血管发病率和死亡率增加有关。本研究旨在根据2017年美国心脏病学会/美国心脏协会指南调查当代高血压的识别和管理趋势。

数据来源:分析了2017年至2020年全国健康与营养检查调查的数据。参与者年龄在20岁到79岁之间。

方法:根据适应症和指南依从性,参与者被分为不同的治疗组。描述性统计用于比较药物使用、诊断率和血压控制。

结果:共有265 402 026人符合纳入标准,其中19.0% (n=50 349 209)接受了指南性降压治疗。在指南降压管理组中,45.7%的参与者使用单一降压类治疗,55.2%的参与者血压未控制。未接受指南降压管理的参与者有11.5% (n=24 741 999)的病例适合一级预防,2.4% (n=5 070 044)的病例适合二级预防;其中66.3% (n=19 774 007)不知道自己可能患有高血压,也没有服用抗高血压药物。

结论:坚持抗高血压治疗指南是次优的。超过一半接受指导治疗的患者血压不受控制。三分之一符合条件的参与者可能没有接受治疗。三分之二的合格参与者缺少教育和医疗管理。解决这些缺陷对于改善血压控制和减少心血管事件结局至关重要。

4498c8dd6a7ac0df3d892966958330bd.png

4.外国学者文章介绍(四)

2f77f091d184b3611ad86baae34a7ff1.png

文章题目:代谢综合征成分与高尿酸血症的患病率及其与种族的关系:2011 - 2020年美国人群的调查结果

背景我们探讨了美国人群中高尿酸血症和代谢综合征患病率的趋势,并按种族调查了代谢综合征和高尿酸血症成分之间的关系。

数据来源:我们分析了最近四个NHANES周期(2011年至2020年3月)的数据,包括10,175名参与者。

方法:根据NHANES III指南,高尿酸血症定义为血清尿酸值> 7.0 mg/dL(男性)或> 5.7 mg/dL(女性)。代谢综合征的定义遵循国家胆固醇教育计划成人治疗小组III (NCEP ATP III)指南。我们估计了每个周期中代谢综合征和高尿酸血症的患病率,并使用logistic回归进行亚组分析,以调查代谢综合征与高尿酸血症相关成分的模式。

结果:在最近一个周期(2017- 2020年3月),代谢综合征的患病率为45.9%,高尿酸血症的患病率为20.7%。在2011-2020年期间,西班牙裔和亚洲人群中代谢综合征患病率显著上升,高尿酸血症患病率仅在西班牙裔人群中显著增加。调整混杂因素后,代谢综合征患者女性高尿酸血症高于男性。血压升高是高尿酸血症的最强因素。这种关联在亚洲人群中最弱。腰围是亚洲地区唯一与高尿酸血症相关的重要因素。

结论:代谢综合征的患病率呈上升趋势,但高尿酸血症的患病率没有特定的年代际变化趋势。代谢综合征和高尿酸血症有种族特异性的关联,特别是在亚洲。

5a3e918eba39a58fa6019c84a72c28ea.png

5.中国学者文章介绍(五)

ac8ba643cab8845e2b697bfa6369e19f.png

文章题目:在美国全国人口中,暴露于BTEX与心血管疾病、血脂异常和白细胞增多有关

研究目的:关于血液样本中单个苯、甲苯、乙苯和二甲苯(BTEX)及其混合物对普通人群心血管疾病(CVD)和相关危险因素影响的综合研究有限。本研究旨在探讨血液中单独和混合BTEX对总CVD及其亚型、脂质谱和白细胞计数的影响。

数据来源:1999-2018年NHANES中17007名参与者。

方法采用调查加权多因素logistic回归分析了1999-2018年NHANES中17007名参与者的血液个体和混合BTEX与CVD及其亚型之间的关系。采用加权分位数和模型和分位数g计算估计BTEX混合物对CVD的综合影响。加权多元线性回归评估BTEX对脂质谱和白细胞的影响,包括其五部分差异计数。

结果:与BTEX混合物的参考四分位数相比,最高四分位数的个体心血管疾病风险的调整优势比显著增加(1.64,95% CI: 1.23 ~ 2.19, P为趋势= 0.008)。苯、甲苯、乙苯和间/对二甲苯呈正相关,呈现单调递增的暴露-反应关系。混合BTEX与充血性心力衰竭(CHF)、心绞痛和心脏病发作有关。个别苯、甲苯和乙苯与CHF有关,而甲苯、乙苯和所有二甲苯异构体与心绞痛有关。苯、甲苯和邻二甲苯与心脏病发作有关。混合BTEX和单独BTEX均与甘油三酯、胆固醇、低密度脂蛋白和白细胞(包括其五分差计数)呈正相关,但与高密度脂蛋白呈负相关。亚组分析确定了吸烟、饮酒、运动、身体质量指数、高血压和糖尿病对特定毒物与心血管疾病风险之间关系的调节作用。

结论:暴露于BTEX与心血管疾病和心血管危险因素相关。这些发现强调了在评估心血管健康风险时考虑血液BTEX水平的重要性。

a4dec3e5bba46b33145e7c3b45be9a41.png

6.中国学者文章介绍(六)

067fae137e6fa4d83d6623abd1d46e73.png

文章题目:中性粒细胞与淋巴细胞的比值与高血压患者的全因死亡率和心血管死亡率相关

研究目的:确定可靠的预后指标对于有效治疗高血压至关重要。中性粒细胞与淋巴细胞比率(NLR)已成为与心血管预后相关的潜在炎症标志物。本研究旨在探讨NLR与高血压患者全因死亡率和心血管死亡率的关系。

数据来源:本研究分析了2009年至2014年国家健康与营养调查(NHANES)中3067名高血压成年人的数据。

方法:死亡率详细信息来自国家死亡指数(NDI)。采用限制性三次样条(RCS)观察NLR与死亡风险的关系。采用加权Cox比例风险模型评估NLR与死亡风险的独立相关性。采用时间相关的受试者工作特征曲线(ROC)分析来获得NLR对生存的预测能力。采用中介分析探讨NLR对eGFR介导的死亡率的间接影响。

结果:在中位92.0个月的随访中,发生了538例死亡,其中包括114例心血管死亡。RCS分析显示NLR与全因死亡率和心血管死亡率呈正相关。将受试者分为NLR高(> 3.5)组和NLR低(≤3.5)组。加权Cox比例风险模型显示,NLR较高的个体的全因风险(HR 1.96, 95%可信区间(CI) 1.52-2.52, p < 0.0001)和心血管死亡率(HR 2.33, 95% CI 1.54-3.51, p < 0.0001)显著增加。分层和相互作用分析证实了核心结果的稳定性。值得注意的是,eGFR部分介导了NLR与全因死亡率和心血管死亡率之间的关联,比例分别为5.4%和4.7%。此外,3年、5年和10年生存率的曲线下面积(AUC),全因死亡率分别为0.68、0.65和0.64,心血管死亡率分别为0.68、0.70和0.69。

结论:NLR升高独立地增加了高血压患者全因死亡和心血管死亡的风险。

ae9b07973829d5128d8d587ee895f87b.png

7.中国学者文章介绍(七)

045c99a45be050899c9860b2093fe6af.png

文章题目:甘油三酯-葡萄糖(TyG)指数与美国人群胸痛发病率和死亡率的关系

研究目的:甘油三酯和葡萄糖(TyG)指数是胰岛素抵抗的简单替代指标,与心血管疾病有关。然而,TyG指数与胸痛之间的关系缺乏证据。本研究旨在探讨TyG指数与胸痛的关系,并评估TyG指数与胸痛或无胸痛参与者的全因死亡率之间的关系。

数据来源:本研究利用了2001-2012年全国健康与营养调查(NHANES)的数据。

方法:采用了横断面和队列研究设计相结合的方法。TyG指数与胸痛之间的关系采用加权逻辑回归模型进行调查。加权Cox比例风险模型用于估计全因死亡率的风险比(hr)和95%置信区间(95% ci)。限制三次样条分析用于探讨TyG指数与胸痛或全因死亡率之间的线性或非线性关系。

结果:结果显示TyG指数与胸痛呈正相关,即使在调整了潜在的混杂因素后也是如此(四分位数4 vs四分位数1,优势比[OR] 1.42, 95%置信区间[CI] 1.14-1.77, P = 0.002)。在平均139个月的随访期间,共有2286人(27.43%)死亡。加权多变量Cox回归模型显示,TyG指数每增加一个单位,胸痛患者的调整死亡率风险比(HR)为1.14 (95% CI = 0.94-1.37),无胸痛患者的调整死亡率风险比为1.25 (95% CI = 1.09-1.43)。此外,限制三次样条分析显示,TyG指数与胸痛之间存在线性关系(非线性P = 0.902),而在不考虑胸痛的人群中,TyG指数与全因死亡率之间存在非线性关系(非线性P < 0.01)。

结论:TyG指数与胸痛的高发生率呈正相关。此外,TyG指数不仅与胸痛参与者的全因死亡率相关,也与无胸痛参与者的全因死亡率相关。

b0ac57ef11eeaaef07d84152a0345659.png

8.中国学者文章介绍(八)

d2c28ccc56f93c676b52e2b2c90bb16c.png

文章题目:成人处方阿片类药物使用者身体活动与抑郁之间的关系:基于NHANES 2007-2018的横断面分析

研究目的:本研究旨在研究成人处方阿片类药物使用者的身体活动(PA)与抑郁之间的关系。

数据来源:最近服用处方阿片类药物的成年人的数据来自2007-2018年的NHANES。

方法:根据各领域PA是否≥600 MET-min/week分为两组。根据每周活动频次,将娱乐性体育活动(RPA)分为不活动、活动不足、周末运动(WW)和经常运动。PHQ-9得分≥10分为抑郁症。

结果:RPA≥600 MET-min/周与抑郁风险降低40% (OR: 0.60, 95%CI: 0.38-0.96, P = 0.032)相关。限制性三次样条图显示RPA与抑郁呈非线性剂量-反应关系(P = 0.045),抑郁风险拐点在600 MET-min/week左右。运动组与不运动组的抑郁风险差异无统计学意义(OR: 0.65, 95%CI: 0.25-1.72, P = 0.382)。规律运动组抑郁风险比不运动组低45% (OR: 0.55, 95%CI: 0.31-0.99, P = 0.046)。

结论:只有常规RPA与抑郁风险降低有关,且RPA表现出非线性的剂量-反应关系。WW的抗抑郁作用不显著。

851d2f5368136637242fa281670fdccf.png

9.中国学者文章介绍(九)

0226ea33dc5e97e7d176ac3ce4096c59.png

文章题目:“周末战士”和有规律的体育锻炼与美国成年人腹部和全身肥胖的关系

研究目的:这项研究调查了身体活动模式与腹部和全身肥胖之间的关系。

数据来源:数据提取自2011年至2018年国家健康与营养检查调查(NHANES)中20至59岁的参与者。

方法:腹部和全身肥胖通过双能x线吸收仪(DXA)和人体测量测量进行评估。dxa测量指标进一步归一化为z分数。通过问卷收集身体活动水平,并将其分为不活动、“周末战士”(WW)和定期活动(RA)。使用调查线性回归模型来评估身体活动模式与肥胖指标之间的关联。

结果:9629名参与者中,772名(8.2%)报告WW模式,3277名(36.9%)报告RA模式。与不活动组相比,WW和RA均有较低的dxa测量腹部脂肪(WW: β: -0.24, 95% CI: -0.38至-0.10;RA: -0.18, 95% CI: -0.29 ~ -0.07),腰围(WW: β: -1.94, 95% CI: -3.16 ~ -0.73;RA: -1.31, 95% CI: -2.32至-0.29),全身脂肪量(WW: β: -0.16, 95% CI: -0.25至-0.08;类风湿性关节炎:-0.11,95%置信区间CI: -0.18 - -0.04),和BMI (WW:β:-0.78,95%置信区间CI: -1.27 - -0.28;RA: -0.47, 95% CI: -0.89 ~ -0.04)。

结论:WW模式与RA模式和不活动模式相似,与下腹部和全身肥胖相关。

ecb42931d6bf2cd7f1ae0439d1a00dea.png

更多文章如下:

外国学者:

f13c43fb2b6a5b2e058057ba833c7ab0.png

中国学者:

6e8d914655b4f8013096ebecd4762695.png

895d22b86ceb8522c994791149a55eff.png

32e3cc24a5d303491ac47ed46fb5e86f.png

一个专门做公共数据库的公众号,关注我们

497927473bebaa195e1f2a41b65c1a9a.png

### 使用NHANES数据库计算和分析饮食模式 #### 数据获取与准备 为了使用NHANES数据库进行饮食模式的分析,首先需要从官方渠道下载所需的数据集。具体来说,可以选择特定年份的数据文件,例如2007-2008年、2009-2010年、2011-2012年和2013-2014年的数据[^1]。 这些数据通常以SAS传输格式(.XPT)提供,因此建议安装Python中的`pandas`库来读取并转换成更易操作的形式: ```python import pandas as pd from sas7bdat import SAS7BDAT with SAS7BDAT('path_to_file.xpt') as reader: df = reader.to_data_frame() df.head() # 查看前几行确认加载成功 ``` #### 饮食模式评估指标构建 针对饮食模式的研究,可以从多个角度出发定义评价体系。考虑到研究对象为非正态连续变量,在建立模型之前应当考虑采用适合的方法处理偏斜度较高的特征值分布情况。 一种常见的做法是对原始数值应用Box-Cox变换或其他形式的幂次方根变化使其接近于标准正态分布;另一种则是直接选用基于秩次统计量的技术如Kruskal-Wallis H检验来进行组间差异比较而不必担心违反假设条件的问题。 对于具体的饮食模式量化方面,则可以根据实际需求选取合适的营养素摄入比例作为核心考量因素之一,并结合其他辅助性的生活习惯参数共同构成综合性的衡量尺度——即所谓的“氧化平衡评分”,这一体系能够有效反映个体日常摄取食物种类及其加工方式对人体健康状态的影响程度。 #### 统计建模与可视化呈现 完成上述预处理步骤之后即可进入正式建模环节。此时可利用多元线性回归、逻辑斯蒂回归乃至机器学习算法(如随机森林分类器)探索不同饮食结构同目标结局之间的关联强度及方向性规律。与此同时,借助Seaborn或Matplotlib等绘图包制作直观形象的结果展示图表有助于加深理解所得结论的实际意义。 ```python import seaborn as sns sns.pairplot(df[['Dietary_Score', 'Health_Outcome']]) plt.show() # 建立简单线性关系预测模型 from sklearn.linear_model import LinearRegression model = LinearRegression().fit(X=df[['Dietary_Score']], y=df['Health_Outcome']) print(f"Coefficient of determination R^2 is {model.score(X, y)}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值