先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新Linux运维全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上运维知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip1024b (备注运维)
正文
引言
在当今的机器学习领域,大模型已经成为研究和应用的热点。随着模型规模的不断扩大,一种称为“大模型幻觉”的现象逐渐浮出水面。这种现象描述了一个事实:模型在某些任务上表现出色,似乎理解了复杂的概念,但在其他场景中却出人意料地失败。本文将深入探讨这一现象的根源,并提出可能的解决策略。
什么是大模型幻觉?
大模型幻觉指的是在某些任务上,大型机器学习模型表现出人类般的理解能力和智能,给人以“幻觉”般的错觉,认为模型真的理解了数据和任务。然而,当这些模型面对稍有变化或未曾见过的情况时,它们的表现往往会急剧下降,显示出缺乏真正的理解和泛化能力。
产生幻觉的原因
- 过度拟合:模型可能在训练数据上学得太好,以至于它们学习了数据中的噪声而非潜在规律。
- 数据泄露:在某些情况下,训练数据可能无意中包含了测试数据的信息,导致模型在测试时表现异常好。
- 模型复杂性:大模型因其巨大的参数空间,能够捕捉极其细微的模式,这些模式可能与真正的任务相关性不大。
- 人类偏见:研究者和用户可能会因为模型在某些任务上的惊人表现而忽视其在其他场景中的不足。
如何解决这个问题
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注运维)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**