模型幻觉

本文探讨了在数据科学中,模型构建过程中可能出现的模型幻觉问题。随着模型复杂性的增加,过度拟合的风险增大,可能导致模型自我强化偏见。不相关的变量加入模型会产生非零参数估计,从而使模型参数变得不可靠,甚至将原本正确的影响方向估计错误。通过wrongCoef()函数的示例,进一步揭示了这一现象。
摘要由CSDN通过智能技术生成

在搭建模型的过程中,我们往往会从已知的特征中提取更多新的特征,并以此搭建更为复杂的模型,但是模型越复杂,越会值其本身掉入不断“自我催眠,强化偏见”的过程,从而引起过度拟合的问题。如果将毫不相关的变量加入到模型中,也会得到相应的参数估计值,而这个估计值几乎不可能为0,这就造成了所谓的“模型幻觉”。模型幻觉会引起模型参数的不可靠,更严重的是使得原本可能较为正确的估计扭曲为错误,比如将原来变量的正效应估计为负效应(变量对应的参数为正时成为正效应,否则为负效应)。

import statsmodels.api as sm
import numpy as np
import pandas as pd


def generateData():
    """
    生成模型数据
    """
    np.random.seed(5320)
    x = np.array(range(0,20))/2
    error = np.round(np.random.randn(20),2)
    y = 0.05*x +error
    #新加入无关变量z恒等于1
    z = np.zeros(20) + 1
    return pd.DataFrame({"x":x,"z":z,"y":y})

def wrongCoef():
    """
    由于新变量的加入,正效应为负效应
    """
    features = ["x","z"]
    labels = ["y"]
    data = generateData()
    X = data[features]
    Y 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值