2024年大数据最全tensorflow2 minist手写数字识别数据训练(4),高级大数据开发面试题及答案2024

文章讲述了如何使用TensorFlow2进行MNIST手写数字识别的模型训练,强调了系统化学习的重要性,并推荐了一个包含深度学习资源、技术交流和社区支持的平台,帮助读者从初级到高级不断成长。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

from keras import layers, optimizers, datasets

#加载minist数据集,分成训练集和测试集,每个样本包含图像和标签
(x, y), (x_val, y_val) = datasets.mnist.load_data()
print(‘datasets’, x.shape, y.shape, x.min(), y.min())
#训练集图像数据归一化到0-1之前
x = tf.convert_to_tensor(x, dtype=tf.float32) / 255.
#构建数据集对象
db = tf.data.Dataset.from_tensor_slices((x, y))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值