前言
作者写本篇文章旨在复习自己所学知识,并把我在这个过程中遇到的困难的将解决方法和心得分享给大家。由于作者本人还是一个刚入门的菜鸟,不可避免的会出现一些错误和观点片面的地方,非常感谢读者指正!希望大家能一同进步,成为大牛,拿到好offer。
本系列(初识C语言进阶)是对C语言各种知识的深度剖析,是为了能让读者和自己对C的进一步了解。
日志
- 2024.5.28号首发
1.数据类型的介绍
前面已经简单介绍过了C语言的内置类型
既然有了int整型?为什么还要分短整型和长整型这些类型?这是因为类型所能表达的范围
我们在描述一个变量的时候,而且这个变量的取值范围不是特别大。比如年龄,一个人的年龄最多不过百来岁。那有没有必要拿一个int类型的变量来表示年龄age呢?
这个时候我们可以在VS下,包含<limits.h>之后就能看到这些类型的取值范围
我们未来创建变量的时候,就可以根据不同的取值范围选定类型就行了,这将提升内存的利用率。
1.1类型的基本归类
整型家族
属于C语言的内置类型。对于整型有:有符号和无符号之分。
char
unsigned char
signed charshort
unsigned short [int]
signed short [int]int
unsigned int
signed intlong
unsigned long [int]
signed long [int]long long
unsigned long long [int]
signed long long [int]
字符类型也能归类到整型家族里
还有一点就是后面有个short,long,long long等后面其实还有个int,但是因为每次写都有,为了方便,所以可以省略。也就是short == short int。
浮点型家族
属于C语言的内置类型
float
double
在新的语法规则里,也有了long double的说法
构造类型
是我们程序员自己构造出来的自定义类型
数组类型
结构体类型 struct
枚举类型 enum
联合类型 union
前面三种我们都讲过,联合类型后面再介绍。
指针类型
int *pi;
char *pc;
float *pf;
double *pd;
void *pv;
struct s *ps;
空类型
void 表示空类型(无类型)
通常用于函数的返回值、函数的参数、指针类型
2.整型在内存中的存储
我们之前说创建变量要在内存中开辟空间,空间的大小是根据不同类型来决定的。那数据在内存中到底是如何存储的呢?
这里我们清楚内存为a分配了4个字节的空间,那这4个字节的空间具体又是怎么存的10呢?又是如何存-10到b的呢?
要清楚这些,就需要了解下面的概念
2.1原码、反码、补码
计算机中整数(前提是整数)的三种2进制表示方法:原码、反码、补码
三种表示方法均有符号位和数值位两部分,符号位都是用“0”表示正,“1”表示负。
2.1.1数值位正数的原码、反码、补码都相同
2.1.2负数的三种表示方法各不相同,需要计算
原码
直接将数值按照正负数的形式翻译成二进制就可以得到原码反码
将原码的符号位不变,其他位依次按位取反就可以得到反码。补码
反码+1就得到补码
2.1.3对于整型来说:数据存放内存中其实存放的是补码
通过VS调试的内存窗口
可以看到,数据在内存里存的的的确确是补码。这是为什么呢?
在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值位统一处理;
同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程
是相同的,不需要额外的硬件电路。
用补码的原因是因为,有些表达式用补码计算不了的。用一个例子来说明
当我们了解了数据在内存里存的是补码后,我们前面也说了数据在内存里是倒着存的。想要了解为什么倒着存,看到下面大小端的介绍
2.2大小端介绍
比如说现在要存一个16进制表示的数字0x11223344,一个16进制数可以转化为4个二进制数,一共8位数就是32个二进制数,也就是32bit位,需要4个字节。那这个数到底是怎么存到内存里的呢?
每个人数据存储的方式可能不同,但我们存数据到内存里,是为了以后能够拿出来使用。因此计算机不关心数据怎么存,只要保证存进去,再按照相反的方式能够拿出来就行了。
就这样产生了各种各样的存储数据的想法,但是除了第一种和第二种,其他都不可取。因为它们是乱序的,谁知道它们存的规律,拿出来的时候该怎么拿?所以最终数据存储的方式,人们选择了第一种和第二种,因为这两种存进去和还回来都是最简单的。
叫大小端是因为受到了《格列夫游记》的启发。这本书里面有这么一段,两个国家因为冲突打了一仗。冲突发生在剥鸡蛋是从大头向小头剥,还是小头向大头剥。
受到这个启发,这两种存储方式就叫做大端字节序和小端字节序
因此向char类型的数据,是没有顺序可言的。只有一个数据超过一个字节的时候,才讨论顺序
2.3为什么会有大端和小端
为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8 bit。但是在C语言中除了8 bit的char之外,还有16 bit的short类型,32 bit的long类型(是否为32bit,要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。
例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为
高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高
地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则
为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式
还是小端模式。
2.4百度2015年系统工程笔试题
请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序。(10分)
前面我们已经发现了,我当前的机器是小端存储。可以直接打开内存来看。具体是大端还是小端取决于你所使用的机器
当然这里让我们写一个小程序来判断,而不是直接打开内存看。
我们这里直接创建一个变量a,里面存了1。
只要第一个字节的存的是低位的01,那就说明是小端。而第第一个字节的内容是00,说明是大端。因此我们只要能访问到变量a的第一个字节的地址就可以了,也就是拿到变量a第一个字节的地址。
a是一个整型变量,占4个字节。每个字节都有字节的地址,&a就可以拿到第一个字节的字节。
但是&a的类型是int*,int*的地址直接访问的是4个字节的空间。而我们只要访问一个字节就可以了,因此要把它的&a强制转换成char*。再去解引用就能访问到第一个字节的地址
如果没有强制转换就会报警告
而如果理解了,我们完全简化,可以这么写
也可以写个函数来判断
2.5有符号和无符号
- 有符号和无符号是针对整型来说的,浮点型没有这个说法
对于short,int,long,long long类型来说,short就等价于signed short。但是char类型不同
- 有符号和无符号的差别
一个char类型有8个bit位,也就是8个二进制位。
对于一个signed char来说,最高位是符号位,剩下的7位才是能表示数据的数值位。
对于一个unsigned char来说,最高位也是数值位。
- 有符号数和无符号数表示范围有差别
一个char类型有8个二进制位,8个二进制位的所有可能为
现在可以看到signed char能表示的数,以01111111和10000000为正负的分割线。在上面罗列出的是以二进制的形式存进去的补码,而正数的原码、反码、补码相同,所以也是它们的原码,因此能直接写出它们表示的数
127下面的都是负数的补码了,要计算出原码,才能知道它们所表示的值。而10000000我们现在不好算,可以从下面的11111111开始算
因此可以知道从补码11111111往上数值是不断减少的
而补码10000001和补码10000000表示的分别是-127和-128
所以signed char所能表示范围是-128~127
而对于一个unsigned char来说,没有符号就没有负数了。无符号数>=0
依次类推,short和int等整型家族的类型都能计算出它们的范围。下面是有符号char和无符号char的一个对比
4. 二进制序列是有轮回的
这里我们就分清楚了有符号数和无符号数,以后如果想表示恒大于等于0的数,就定义为unsigned。如果想要这个数有正有负,那就定义为signed
2.6练习
2.6.1练习1
1.
//输出什么?
#include <stdio.h>
int main()
{
char a= -1;
signed char b=-1;
unsigned char c=-1;
printf("a=%d,b=%d,c=%d",a,b,c);
return 0;
}
我们可以打开内存看a,b,c的值是什么
可以看到a,b,c里面存的都是ff,也就是二进制的11111111。那为什么打印出来的结果不一样?这是因为abc的打印是以%d的形式打印的。%d是以10进制的形式打印有符号的整型,而abc都是char类型,所以要发生整型提升。
这就是为什么a,b打印的是-1,而c打印的是255
2.6.2练习2
2.输出什么?
#include <stdio.h>
int main()
{
char a = -128;
printf("%u\n",a);
return 0;
}
前面都和第一题一样,也要发生整型提升
所以才打印出来4294967168
2.6.3练习3
3.输出什么?
#include <stdio.h>
int main()
{
char a = 128;
printf("%u\n",a);
return 0;
}
可以看到打印结果和-128是一模一样
要注意的是整型提升不是看的是这个变量是什么类型,而不是用什么类型打印。
2.6.4练习4
4.输出什么?
int i= -20;
unsigned int j = 10;
printf("%d\n", i+j);
//按照补码的形式进行运算,最后格式化成为有符号整数
难道是-10?来看一下
2.6.5练习5
//5.输出什么?
#include <windows.h>
int main()
{
unsigned int i;
for (i = 9; i >= 0; i--)
{
printf("%u\n", i);
Sleep(1000);//让电脑休眠,单位是毫秒
}
return 0;
}
为什么会输出这个?
2.6.6练习6
6.输出什么?
int main()
{
char a[1000];
int i;
for(i=0; i<1000; i++)
{
a[i] = -1-i;
}
printf("%d",strlen(a));
return 0;
}
或许有人会觉得是输出1000,但实际却是255
是不是让人大跌眼镜?来看看究竟是怎么一回事
2.6.7练习7
//7.输出什么?
#include <stdio.h>
unsigned char i = 0;
int main()
{
for (i = 0; i <= 255; i++)
{
printf("hello world\n");
}
return 0;
}
死循环的打印hello world
2.7原码、反码、补码的计算方式
前面就说过了,补码与原码相互转换,其运算过程是相同的
2.7.1第一种计算方法
我们之前知道原码计算补码的过程,因此从补码计算原码的过程就可以倒着来
从原码计算补码的过程是:原码符号位不变,其他位按位取反得到反码,反码+1得到补码。
从补码计算原码的过程是:补码-1得到反码,反码符号位不变,其他位按位取反得到原码。
其实补码与原码相互转换,其运算过程是相同的
2.7.2第二种计算方法
补码与原码相互转换,其运算过程是相同的。也就是说
从原码计算补码的过程是:原码符号位不变,其他位按位取反得到反码,反码+1得到补码。
从补码计算原码的过程是:补码符号位不变,其他位按位取反,再-1就能得到原码
所以以后两种方法我们都可以使用
3.浮点型在内存中的存储
常见的浮点数:
3.14159
1E10
浮点数家族包括: float(单精度)、double(双精度)、long double(更长的双精度)类型。
浮点数表示的范围:float.h中定义
为什么叫浮点数?还有1E10是什么?
前面说整型家族的范围在<limits.h>里,而浮点型表示的范围在这个<float.h>文件里
3.1一个例子
下面有一个例子,我会用这个例子贯穿整个浮点数去理解浮点数在内存总的存储
//输出什么?
int main()
{
int n = 9;
float *pFloat = (float *)&n;
printf("n的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
return 0;
}
大部分人可能都觉得会输出9 9.000000 9 9.000000
,我们只用当前的知识来分析一下
3.1.1错误分析
-
n向内存申请了4个字节空间,存放int类型的9。pFloat指向n的第一个字节
-
%d以10进制的形式打印整型,所以直接打印9
-
pFloat是float*的指针。float类型占4个字节,所以float*的指针解引用访问4个字节。pFloat指向的是n的第一个字节的地址,而n也用了4个字节存了9。所以*pFloat,就能访问到9。
9是整型,但是%f是以浮点型去打印,所以不是打印9,打印9.0。而%f默认小数点后有6位数,所以打印9.000000
-
*pFloat = 9.0;
,n的值被改成了9.0,但是再一次使用%d的形式打印的时候,是打印整型,小数点后面不要了。所以打印9
-
最后以%f的形式打印*pFloat,但是*pFloat的值已经被修改成了9.0。所以我们最后打印的是9.000000
-
来看一下最后输出的结果是不是像我们分析的那样
发现和我们分析不一样 -
来对比一下
-
n是一个整型,最开始这个整型里放一个9。也就是说9是以整型的形式放到内存里
-
按照我们预想的分析:哦,那是不是,后面
*pFloat = 9.0;
,以浮点数的形式放进去之后,以整型的形式和浮点数的形式拿出来的结果也就不一样了?
3.2浮点数存储规则
根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
(-1)^S * M * 2^E
(-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数。
M表示有效数字,大于等于1,小于2。
2^E表示指数位。
3.2.1任意一个浮点数V都可以写成(-1)^S * M * 2^E
浮点数写成二进制数,小数点前的十进制转换成二进制,小数点后的十进制转换成二进制。
-
二进制的浮点数写成科学记数法
-
任意一个浮点数的V都可以写成(-1)^S * M * 2^E
在将一个十进制的浮点数转换成二进制的浮点数之后,再根据科学记数法写出的形式都可以写成(-1)^S * M * 2^E -
我们回过头再来看
-
那现在我们就用这个方法将9.0写成(-1)^S * M * 2^E的形式
注意不要举太特殊的例子
3.2.2IEEE754规定
当我们能把一个浮点数V写成(-1)^S * M * 2^E这种形式的时候,IEEE754规定:对于浮点数V,在存储的时候,不直接存它的值,而是存S、M、E就可以了。
3.2.2.1IEEE 754规定
对于32位的浮点数,最高的1位是符号位S,接着的8位是指数E,剩下的23位为有效数字M。
对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。
3.2.2.2IEEE 754对有效数字M和指数E,还有一些特别规定。
-
前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。
比如保存1.01的时
候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。这样会使得它的精度会更高。当然double类型的数据也一样 -
至于指数E来说,情况就比较复杂
首先,E位一个无符号的整数(unsigned int),不管是float类型的8个bit还是double类型的11个bit位,都认为里面存的是无符号的整数。
这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。
但是,我们知道,科学计数法中的E是可以出现负数的,比如说0.5
所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。
假设现在就要存0.5
我们存进去的时候加了中间值127或者1023,因此拿出来的时候就需要减去中间值,才能拿到真实的E。
通过这样的修正,负数也能存到无符号的整型E里去。当然为了统一规则,正数的E存进去也要加中间值,否则是算不出来真实的E的。 -
我们来测试一下是不是真的是这样
#include <stdio.h>
int main()
{
float f = 5.5f;
//101.1
//1.011 * 2^2
//(-1)^0 * 1.011 * 2^2
//S=0
//M=1.011
//E=2 存进去的时候还要加上127,因此真实存进去的是129 10000001
// 0 10000001 011
//S存在最高位 129 M左边的1省略不存,只存小数点后的数,不够23个bit位,后面补0
//因此实际存的是
//0 10000001 01100000000000000000000
//S E M
//01000000101100000000000000000000 这个是内存真实存进去的二进制序列
//打开内存观察的时候,用的是16进制
//0100 0000 1011 0000 0000 0000 0000 0000
// 4 0 b 0 0 0 0 0
//0x40b00000 转换成16进制
//00 00 b0 40 小端字节序
return 0;
}
调试内存窗口,&出f的内存一看果然是0x40b00000
所以我们刚刚分析的没有问题
- 浮点数的也是有范围的,所以E不会特别大,也不会特别小
假设此时是float的E,范围就是0~255。这个时候真实的E是128,再加上中间值127,就放满了。而真实的E是129,在加中间值127,结果就是256了,就放不下了。
3.2.2.3浮点数怎么拿出来?
前面的M其实已经说了怎么拿出来。在拿的时候23个bit位或者52个bit位的小数放在小数点后面,小数点前面+1就行了。而S也是直接拿出来就行,没什么特殊的。但是对于指数E从内存中取出,还可以再分成三种情况
- E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。
比如:
0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为
1.0*2^(-1),其真实存进去的E为-1+127=126,表示为
01111110,而M1.0去掉1的后小数点后面部分为0,补齐0到23位00000000000000000000000,则其二进
制表示形式为
0 01111110 00000000000000000000000
- E位全0
当E的8个bit位存进去的是全0的情况下:表示E存进去的值是0。所以E真实的值是-127,E是一个非常小的数字
所以我们说如果是这样的E存进去的值为全0的时候,浮点数V将无限趋于±0。因此直接就规定:
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,也就是-126(或者-1022)
有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于
0的很小的数字。
- E为全1
当E的8个bit位存的是全1的时候:表示E存进去的值是255。所以真实的E是128,是一个非常大的数字。
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);
好了,浮点数的存储介绍到这里就可以了
3.3解释之前的题目
之前的题目打印结果是这样
- 9是一个整数放到n里去,也就是32个bit位
int main()
{
int n = 9;
//00000000000000000000000000001001 9存到n里面去的二进制序列
float* pFloat = (float*)&n;
printf("n的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
return 0;
}
- 在把n的地址取出来,放到指针pFloat里面去,pFloat就能执行n的空间。而pFloat又是float*,所以解引用的时候能访问4个字节,也就是n空间里放大32位的二进制序列全部都能访问到
int main()
{
int n = 9;
//00000000000000000000000000001001 9存到n里面去的二进制序列
float* pFloat = (float*)&n;
//00000000000000000000000000001001 pFloat能全部访问到
printf("n的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
return 0;
}
- 9以整型形式放进去,再以整型n的形式拿出来,形式对应了。
int main()
{
int n = 9;
//00000000000000000000000000001001 9存到n里面去的二进制序列
float* pFloat = (float*)&n;
//00000000000000000000000000001001 pFloat能全部访问到
printf("n的值为:%d\n", n);
//形式对对应了,就能完完全全拿出00000000000000000000000000001001
//00000000000000000000000000001001 再以%d的形式打印,就能打印出9,没问题
printf("*pFloat的值为:%f\n", *pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
return 0;
}
- *pFloat解引用访问n这块空间的时候,是以浮点数的视角看待00000000000000000000000000001001这串二进制的。也就是说它实际解析出来的是(-1)^S * M * 2^E
int main()
{
int n = 9;
//00000000000000000000000000001001 9存到n里面去的二进制序列
float* pFloat = (float*)&n;
//00000000000000000000000000001001 pFloat能全部访问到
printf("n的值为:%d\n", n);
//9以整型形式放进去,再以整型n的形式拿出来,就能完完全全拿出00000000000000000000000000001001
//00000000000000000000000000001001 再以%d的形式打印,就能打印出9,没问题
printf("*pFloat的值为:%f\n", *pFloat);
//0 00000000 00000000000000000001001
//S=0
//M=00000000000000000001001
//E=00000000
*pFloat = 9.0;
printf("num的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
return 0;
}
前面就说了,当E存进去的全为0的时候,虽然E的真实值是-127,但是E会被指定为-126。有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。此时去还原V值,将是一个非常小的数字
int main()
{
int n = 9;
//00000000000000000000000000001001 9存到n里面去的二进制序列
float* pFloat = (float*)&n;
//00000000000000000000000000001001 pFloat能全部访问到
printf("n的值为:%d\n", n);
//9以整型形式放进去,再以整型n的形式拿出来,就能完完全全拿出00000000000000000000000000001001
//00000000000000000000000000001001 再以%d的形式打印,就能打印出9,没问题
printf("*pFloat的值为:%f\n", *pFloat);
//0 00000000 00000000000000000001001
//S=0
//M=00000000000000000001001
//E=00000000
//当E为全0时,真实还原出来的V
//0 00000000 00000000000000000001001
//S E=-126 M=0.00000000000000000001001
//V=(-1)^0 * 0.00000000000000000001001 * 2^-126
//V值无限接近于+0
//%f只能表示小数点后6位
*pFloat = 9.0;
printf("num的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
return 0;
}
0.00000000000000000001001已经很小了,还要乘上2^-126V,那将会是一个非常非常小的数字,无限接近于0。而%f只能表示小数点后6位,所以在这极限的6位中,不可能看到有值的,所以全是0。因此就打印出了0.000000
- 当走到这里的时候,n还是4字节的整数n。但是
*pFloat = 9.0;
执行后,就以浮点数的视角往n里放了9.0
int main()
{
int n = 9;
//00000000000000000000000000001001 9存到n里面去的二进制序列
float* pFloat = (float*)&n;
//00000000000000000000000000001001 pFloat能全部访问到
printf("n的值为:%d\n", n);
//9以整型形式放进去,再以整型n的形式拿出来,就能完完全全拿出00000000000000000000000000001001
//00000000000000000000000000001001 再以%d的形式打印,就能打印出9,没问题
printf("*pFloat的值为:%f\n", *pFloat);
//0 00000000 00000000000000000001001
//S=0
//M=00000000000000000001001
//E=00000000
//当E为全0时,真实还原出来的V
//0 00000000 00000000000000000001001
//S E=-126 M=0.00000000000000000001001
//V=(-1)^0 * 0.00000000000000000001001 * 2^-126
//V值无限接近于+0
*pFloat = 9.0;
//1001.0
//1.001 * 2^3
//(-1)^0 * 1.001 * 2^3
//S=0 E=3 M=1.001
//真实往内存存的
//0 130 001
//0 10000010 00100000000000000000000
//01000001000100000000000000000000
printf("num的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
return 0;
}
- 现在内存n里实际存的是01000001000100000000000000000000,当以整数n拿的时候,认为这个二进制序列是补码。再以%d形式打印的时候,认为这个二进制序列是一个有符号数,高位为0,所以三码相同。所以就将01000001000100000000000000000000作为原码打印出来。而这个序列是二进制的,转化乘10进制的就是1091567616,因此打印出了1091567616
int main()
{
int n = 9;
//00000000000000000000000000001001 9存到n里面去的二进制序列
float* pFloat = (float*)&n;
//00000000000000000000000000001001 pFloat能全部访问到
printf("n的值为:%d\n", n);
//9以整型形式放进去,再以整型n的形式拿出来,就能完完全全拿出00000000000000000000000000001001
//00000000000000000000000000001001 再以%d的形式打印,就能打印出9,没问题
printf("*pFloat的值为:%f\n", *pFloat);
//0 00000000 00000000000000000001001
//S=0
//M=00000000000000000001001
//E=00000000
//当E为全0时,真实还原出来的V
//0 00000000 00000000000000000001001
//S E=-126 M=0.00000000000000000001001
//V=(-1)^0 * 0.00000000000000000001001 * 2^-126
//V值无限接近于+0
*pFloat = 9.0;
//1001.0
//1.001 * 2^3
//(-1)^0 * 1.001 * 2^3
//S=0 E=3 M=1.001
//真实往内存存的
//0 130 001
//0 10000010 00100000000000000000000
//01000001000100000000000000000000
printf("num的值为:%d\n", n);
//以整数n拿,就认为01000001000100000000000000000000为整数的补码
//以%d的形式打印,就要01000001000100000000000000000000是有符号数
//高位是0,0为正,三码相同。因此打印01000001000100000000000000000000
//01000001000100000000000000000000转换为十进制就是1091567616
printf("*pFloat的值为:%f\n", *pFloat);
return 0;
}
- 最后,\pFloat拿数据,而9.0正好是以浮点数的视角放进去的。所以拿出的就是9.0,而%f又会打印出6位小数,所以最终打印出9.000000
4.总结
还没想好