YOLOv5 是一种先进且高效的目标检测算法,具有速度快、精度高、易于使用等特点2。以下是关于 YOLOv5 的详细介绍:
- 发展历程:
- 2020 年 6 月份,YOLOv5 被开源。之后不断更新,目前已经有多个版本。其发展过程中在网络结构、数据增强、损失函数等方面不断改进和优化。
- 网络结构3:
- 输入端:
- Mosaic 数据增强:将 1-4 张图片进行随机裁剪、缩放后,再随机排列拼接形成一张图片。这不仅丰富了数据集,还增加了小样本目标,提升了网络的训练速度。并且在进行归一化操作时会一次性计算 4 张图片的数据,降低了模型对内存的需求。
- 自适应锚框计算:每次训练时会自适应地计算不同训练集中的最佳锚框值,帮助网络更快地收敛。
- Backbone:采用了类似 New CSP-Darknet53 的结构,能够有效地提取图像的特征。这种结构在保持较高计算效率的同时,增强了网络对不同尺度目标的特征提取能力。
- Neck:使用了 FPN(Feature Pyramid Network)+PAN(Path Aggregation Network)的结构。FPN 用于将深层的语义信息传递到浅层,以增强对小目标的检测能力;PAN 则在 FPN 的基础上增加了一部分下采样模块,进一步融合了不同层次的特征,使得网络能够更好地应对不同大小的目标。
- Head:采用了 YOLOv3 的检测头,对不同尺度的特征图进行预测,输出目标的类别、位置和置信度等信息。
- 输入端:
- 训练策略3:
- CIOU Loss:在 DIoU 的基础上增加了检测框尺度的 loss,增加了长和宽的 loss,使得预测框更加符合真实框,提高了模型的定位精度。
- 多尺度训练:采用 Multi-Scale Training(0.5~1.5x)策略,对不同尺寸的图片进行训练,增强了模型对不同分辨率图像的适应性。
- Warmup and Cosine LR Scheduler:训练前先进行 Warmup 热身,然后采用 Cosine 学习率下降策略,有助于模型更快地收敛并提高训练稳定性。
- 混合精度训练:使用 Mixed Precision 训练,能够减少显存的占用并且加快训练速度。
- 性能优势2:
- 速度快:经过优化的网络结构和训练策略,使得 YOLOv5 在保持高精度的同时,具有极快的推理速度,能够满足实时检测的需求。
- 精度高:在多个基准测试中展现了卓越的检测精度,对各种类型的目标都能够准确地检测和识别。
- 易于使用:提供了详细的文档和示例,开发者和研究人员可以快速上手,并且支持自定义数据训练,能够根据具体需求调整模型参数。
- 应用场景2:
- 智能监控:可实时检测和识别监控视频中的对象,如人员、车辆等,提高安全监控的效率。
- 自动驾驶:用于自动驾驶系统中,实时检测道路上的行人、车辆、交通标志等重要对象,为车辆的行驶决策提供依据。
- 工业检测:在制造业中,可用于产品质量检测,自动识别产品的缺陷、瑕疵等问题。
- 医疗影像分析:辅助医生快速识别医学影像中的病变区域,如 CT、MRI 等影像中的肿瘤、病灶等。