§1.2 数列的极限2
4. 子列
在数列 { a n } \{a_n\} {an}中任意抽取无穷多项,并保持这些项在原数列中的先后次序,得到的一个数列称为原数列 { a n } \{a_n\} {an}的子列 { a n k } \{a_{n_k}\} {ank}。例如奇子列 { a 2 k + 1 } \{a_{2k + 1}\} {a2k+1},偶子列 { a 2 k } \{a_{2k}\} {a2k}。
结论:若数列 { a n } \{a_n\} {an}收敛于 A A A,则 { a n } \{a_n\} {an}的任一子列也收敛于 A A A。
注:
- 若数列 { a n } \{a_n\} {an}的两个不同子列收敛于不同的极限,则数列 { a n } \{a_n\} {an}发散。例如: a n = ( − 1 ) n + 1 a_n = (-1)^{n + 1} an=(−1)n+1 ,其奇子列 { a 2 k − 1 } \{a_{2k - 1}\} {a2k−1}中, a 2 k − 1 = ( − 1 ) 2 k − 1 + 1 = 1 a_{2k - 1}=(-1)^{2k - 1 + 1}=1 a2k−1=(−1)2k−1+1=1( k ∈ N + k\in N^+ k∈N+),极限为 1 1 1;偶子列 { a 2 k } \{a_{2k}\} {a2k}中, a 2 k = ( − 1 ) 2 k + 1 = − 1 a_{2k}=(-1)^{2k + 1}=-1 a2k=(−1)2k+1=−1( k ∈ N + k\in N^+ k∈N+),极限为 − 1 -1 −1,所以原数列 { a n } \{a_n\} {an}发散。
- 若数列 { a n } \{a_n\} {an}的奇子列与偶子列收敛于同一值 A A A,则 { a n } \{a_n\} {an}也收敛于 A A A。
证明:设 lim n → ∞ a 2 n − 1 = a \lim_{n \rightarrow \infty} a_{2n - 1} = a limn→∞a2n−1=a, lim n → ∞ a 2 n = a \lim_{n \rightarrow \infty} a_{2n} = a limn→∞a2n=a,即 ∀ ε > 0 \forall \varepsilon > 0 ∀ε>0, ∃ N 1 ∈ N + \exists N_1 \in N^{+} ∃N1∈N+, N 2 ∈ N + N_2 \in N^{+} N2∈N+,当 n > N 1 n > N_1 n>N1时,有 ∣ a 2 n − 1 − a ∣ < ε \vert a_{2n - 1} - a\vert < \varepsilon ∣a2n−1−a∣<ε;当 n > N 2 n > N_2 n>N2时,有 ∣ a 2 n − a ∣ < ε \vert a_{2n} - a\vert < \varepsilon ∣a2n−a∣<ε。这意味着在数列 { a n } \{a_n\} {an}中,从 2 N 1 − 1 2N_1 - 1 2N1−1项以后的所有奇数项都满足 ∣ a n − a ∣ < ε \vert a_n - a\vert < \varepsilon ∣an−a∣<ε,从 2 N 2 2N_2 2N2项以后的所有偶数项都满足 ∣ a n − a ∣ < ε \vert a_n - a\vert < \varepsilon ∣an−a∣<ε。因此,取 N = max { 2 N 1 − 1 , 2 N 2 } N = \max\{2N_1 - 1, 2N_2\} N=max{2N1−1,2N2},当 n > N n > N n>N时有 ∣ a n − a ∣ < ε \vert a_n - a\vert < \varepsilon ∣an−a∣<ε,得证。
例1 下列数列收敛的是:
- f ( n ) = ( − 1 ) n + 1 n n + 1 f(n) = (-1)^{n + 1}\frac{n}{n + 1} f(n)=(−1)n+1n+1n
- f ( n ) = { 1 n + 1 n 为奇数 1 n − 1 n 为偶数 f(n) = \begin{cases} \frac{1}{n} + 1 & n为奇数 \\ \frac{1}{n} - 1 & n为偶数 \end{cases} f(n)={n1+1n1−1n为奇数n为偶数
- f ( n ) = { 1 n n 为奇数 1 n + 1 n 为偶数 f(n) = \begin{cases} \frac{1}{n} & n为奇数 \\ \frac{1}{n + 1} & n为偶数 \end{cases} f(n)={n1n+11n为奇数n为偶数
- f ( n ) = { 1 + 2 n 2 n n 为奇数 1 − 2 n 2 n n 为偶数 f(n) = \begin{cases} \frac{1 + 2^n}{2^n} & n为奇数 \\ \frac{1 - 2^n}{2^n} & n为偶数 \end{cases} f(n)={2n1+2n2n1−2nn为奇数n为偶数
解析:
- 对于 f ( n ) = ( − 1 ) n + 1 n n + 1 f(n) = (-1)^{n + 1}\frac{n}{n + 1} f(n)=(−1)n+1n+1n,当 n n n为奇数时, f ( n ) = n n + 1 = 1 − 1 n + 1 f(n)=\frac{n}{n + 1}=1-\frac{1}{n + 1} f(n)=n+1n=1−n+11, lim n → ∞ ( 1 − 1 n + 1 ) = 1 \lim_{n\rightarrow\infty}(1-\frac{1}{n + 1}) = 1 limn→∞(1−n+11)=1;当 n n n为偶数时, f ( n ) = − n n + 1 = − 1 + 1 n + 1 f(n)=-\frac{n}{n + 1}=-1+\frac{1}{n + 1} f(n)=−n+1n=−1+n+11, lim n → ∞ ( − 1 + 1 n + 1 ) = − 1 \lim_{n\rightarrow\infty}(-1+\frac{1}{n + 1}) = -1 limn→∞(−1+n+11)=−1,奇子列和偶子列极限不同,所以该数列发散。
- 对于 f ( n ) = { 1 n + 1 n 为奇数 1 n − 1 n 为偶数 f(n) = \begin{cases} \frac{1}{n} + 1 & n为奇数 \\ \frac{1}{n} - 1 & n为偶数 \end{cases} f(n)={n1+1n1−1n为奇数n为偶数,奇子列 lim k → ∞ ( 1 2 k − 1 + 1 ) = 1 \lim_{k\rightarrow\infty}(\frac{1}{2k - 1}+1)=1 limk→∞(2k−11+1)=1,偶子列 lim k → ∞ ( 1 2 k − 1 ) = − 1 \lim_{k\rightarrow\infty}(\frac{1}{2k}-1)= - 1 limk→∞(2k1−1)=−1,奇子列和偶子列极限不同,该数列发散。
- 对于 f ( n ) = { 1 n n 为奇数 1 n + 1 n 为偶数 f(n) = \begin{cases} \frac{1}{n} & n为奇数 \\ \frac{1}{n + 1} & n为偶数 \end{cases} f(n)={n1n+11n为奇数n为偶数,奇子列 lim k → ∞ 1 2 k − 1 = 0 \lim_{k\rightarrow\infty}\frac{1}{2k - 1}=0 limk→∞2k−11=0,偶子列 lim k → ∞ 1 2 k + 1 = 0 \lim_{k\rightarrow\infty}\frac{1}{2k + 1}=0 limk→∞2k+11=0,奇子列和偶子列极限相同,所以该数列收敛于 0 0 0。
- 对于 f ( n ) = { 1 + 2 n 2 n n 为奇数 1 − 2 n 2 n n 为偶数 f(n) = \begin{cases} \frac{1 + 2^n}{2^n} & n为奇数 \\ \frac{1 - 2^n}{2^n} & n为偶数 \end{cases} f(n)={2n1+2n2n1−2nn为奇数n为偶数,奇子列 lim k → ∞ 1 + 2 2 k − 1 2 2 k − 1 = lim k → ∞ ( 1 2 2 k − 1 + 1 ) = 1 \lim_{k\rightarrow\infty}\frac{1 + 2^{2k - 1}}{2^{2k - 1}}=\lim_{k\rightarrow\infty}(\frac{1}{2^{2k - 1}} + 1)=1 limk→∞22k−11+22k−1=limk→∞(22k−11+1)=1,偶子列 lim k → ∞ 1 − 2 2 k 2 2 k = lim k → ∞ ( 1 2 2 k − 1 ) = − 1 \lim_{k\rightarrow\infty}\frac{1 - 2^{2k}}{2^{2k}}=\lim_{k\rightarrow\infty}(\frac{1}{2^{2k}} - 1)= - 1 limk→∞22k1−22k=limk→∞(22k1−1)=−1,奇子列和偶子列极限不同,该数列发散。所以收敛的是选项3。
例 2:
设数列
{
x
n
}
\{x_{n}\}
{xn}的极限为
A
A
A,数列
{
y
n
}
\{y_{n}\}
{yn}的极限为
B
B
B,且
A
≠
B
A\neq B
A=B,则数列
x
1
,
y
1
,
x
2
,
y
2
,
⋯
,
x
n
,
y
n
,
⋯
x_{1},y_{1},x_{2},y_{2},\cdots,x_{n},y_{n},\cdots
x1,y1,x2,y2,⋯,xn,yn,⋯的极限为
(1)
A
A
A
(2)
B
B
B
(3)
A
+
B
A + B
A+B
(4) 不存在
5. 迫敛性
设数列 { x n } \{x_n\} {xn}, { y n } \{y_n\} {yn}都以 A A A为极限,数列 { z n } \{z_n\} {zn}满足:存在 N ∈ N + N \in N^{+} N∈N+, ∀ n > N \forall n > N ∀n>N时有 x n ≤ z n ≤ y n x_n \leq z_n \leq y_n xn≤zn≤yn,则 lim n → ∞ z n = A \lim_{n \rightarrow \infty} z_n = A limn→∞zn=A。
证明:由 lim n → ∞ x n = A \lim_{n \rightarrow \infty} x_n = A limn→∞xn=A可知, ∀ ε > 0 \forall \varepsilon > 0 ∀ε>0, ∃ N 1 ∈ N + \exists N_1 \in N^{+} ∃N1∈N+, ∀ n > N 1 \forall n > N_1 ∀n>N1时有 ∣ x n − A ∣ < ε \vert x_n - A\vert < \varepsilon ∣xn−A∣<ε,即 x n > A − ε x_n > A - \varepsilon xn>A−ε;由 lim n → ∞ y n = A \lim_{n \rightarrow \infty} y_n = A limn→∞yn=A可知,对上述 ε > 0 \varepsilon > 0 ε>0, ∃ N 2 ∈ N + \exists N_2 \in N^{+} ∃N2∈N+, ∀ n > N 2 \forall n > N_2 ∀n>N2时有 ∣ y n − A ∣ < ε \vert y_n - A\vert < \varepsilon ∣yn−A∣<ε,即 y n < A + ε y_n < A + \varepsilon yn<A+ε。又因为 x n ≤ z n ≤ y n x_n \leq z_n \leq y_n xn≤zn≤yn,取 N = max { N 1 , N 2 } N = \max\{N_1, N_2\} N=max{N1,N2},当 n > N n > N n>N时,有 A − ε < z n < A + ε A - \varepsilon < z_n < A + \varepsilon A−ε<zn<A+ε,所以 lim n → ∞ z n = A \lim_{n \rightarrow \infty} z_n = A limn→∞zn=A。
6. 数列极限的四则运算
设 lim n → ∞ x n = A \lim_{n \rightarrow \infty} x_n = A limn→∞xn=A, lim n → ∞ y n = B \lim_{n \rightarrow \infty} y_n = B limn→∞yn=B,则:
- 加法与减法: lim n → ∞ ( x n ± y n ) = A ± B \lim_{n \rightarrow \infty} (x_n \pm y_n) = A \pm B limn→∞(xn±yn)=A±B。
- 乘法: lim n → ∞ ( x n ⋅ y n ) = A ⋅ B \lim_{n \rightarrow \infty} (x_n \cdot y_n) = A \cdot B limn→∞(xn⋅yn)=A⋅B。
- 除法: lim n → ∞ x n y n = A B \lim_{n \rightarrow \infty} \frac{x_n}{y_n} = \frac{A}{B} limn→∞ynxn=BA( B ≠ 0 B \neq 0 B=0) 。
三、数列极限的计算方法
1. 利用 lim n → ∞ 1 n = 0 \lim_{n \rightarrow \infty} \frac{1}{n} = 0 limn→∞n1=0, lim n → ∞ q n = 0 ( ∣ q ∣ < 1 ) \lim_{n \rightarrow \infty} q^n = 0 (|q| < 1) limn→∞qn=0(∣q∣<1)
例3:计算极限:
-
lim
n
→
∞
2
n
3
−
n
+
1
3
n
3
+
n
2
−
n
\lim_{n \rightarrow \infty} \frac{2n^3 - n + 1}{3n^3 + n^2 - n}
limn→∞3n3+n2−n2n3−n+1
- 解:分子分母同时除以 n 3 n^3 n3,得到 lim n → ∞ 2 − 1 n 2 + 1 n 3 3 + 1 n − 1 n 2 \lim_{n \rightarrow \infty} \frac{2 - \frac{1}{n^2} + \frac{1}{n^3}}{3 + \frac{1}{n} - \frac{1}{n^2}} limn→∞3+n1−n212−n21+n31。因为 lim n → ∞ 1 n = 0 \lim_{n \rightarrow \infty} \frac{1}{n} = 0 limn→∞n1=0, lim n → ∞ 1 n 2 = 0 \lim_{n \rightarrow \infty} \frac{1}{n^2} = 0 limn→∞n21=0, lim n → ∞ 1 n 3 = 0 \lim_{n \rightarrow \infty} \frac{1}{n^3} = 0 limn→∞n31=0,所以原式 = 2 − 0 + 0 3 + 0 − 0 = 2 3 =\frac{2 - 0 + 0}{3 + 0 - 0}=\frac{2}{3} =3+0−02−0+0=32。
-
lim
n
→
∞
3
n
+
5
n
2
+
n
+
4
\lim_{n \rightarrow \infty} \frac{3n + 5}{\sqrt{n^2 + n + 4}}
limn→∞n2+n+43n+5
- 解:分子分母同时除以 n n n,则原式变为 lim n → ∞ 3 + 5 n 1 + 1 n + 4 n 2 \lim_{n \rightarrow \infty} \frac{3 + \frac{5}{n}}{\sqrt{1 + \frac{1}{n} + \frac{4}{n^2}}} limn→∞1+n1+n243+n5。当 n → ∞ n \to \infty n→∞时, 5 n → 0 \frac{5}{n}\to0 n5→0, 1 n → 0 \frac{1}{n}\to0 n1→0, 4 n 2 → 0 \frac{4}{n^2}\to0 n24→0,所以极限为 3 + 0 1 + 0 + 0 = 3 \frac{3 + 0}{\sqrt{1 + 0 + 0}} = 3 1+0+03+0=3。
-
lim
n
→
∞
n
2
n
+
1
\lim_{n \rightarrow \infty} \frac{n}{2n + 1}
limn→∞2n+1n
- 解:分子分母同时除以 n n n,得 lim n → ∞ 1 2 + 1 n \lim_{n \rightarrow \infty} \frac{1}{2 + \frac{1}{n}} limn→∞2+n11,因为 lim n → ∞ 1 n = 0 \lim_{n \rightarrow \infty} \frac{1}{n} = 0 limn→∞n1=0,所以极限为 1 2 + 0 = 1 2 \frac{1}{2 + 0}=\frac{1}{2} 2+01=21。
-
lim
n
→
∞
n
(
n
+
1
−
n
)
\lim_{n \rightarrow \infty} \sqrt{n} (\sqrt{n + 1} - \sqrt{n})
limn→∞n(n+1−n)
- 解:对式子进行分子有理化, n ( n + 1 − n ) = n ( n + 1 − n ) ( n + 1 + n ) n + 1 + n = n n + 1 + n \sqrt{n} (\sqrt{n + 1} - \sqrt{n})=\frac{\sqrt{n}(\sqrt{n + 1} - \sqrt{n})(\sqrt{n + 1} + \sqrt{n})}{\sqrt{n + 1} + \sqrt{n}}=\frac{\sqrt{n}}{\sqrt{n + 1} + \sqrt{n}} n(n+1−n)=n+1+nn(n+1−n)(n+1+n)=n+1+nn,分子分母同时除以 n \sqrt{n} n,得到 lim n → ∞ 1 1 + 1 n + 1 \lim_{n \rightarrow \infty} \frac{1}{\sqrt{1 + \frac{1}{n}} + 1} limn→∞1+n1+11,因为 lim n → ∞ 1 n = 0 \lim_{n \rightarrow \infty} \frac{1}{n} = 0 limn→∞n1=0,所以极限为 1 1 + 0 + 1 = 1 2 \frac{1}{\sqrt{1 + 0} + 1}=\frac{1}{2} 1+0+11=21 。
-
lim
n
→
∞
(
−
1
)
n
+
1
+
2
n
+
1
(
−
1
)
n
+
2
n
\lim_{n \rightarrow \infty} \frac{(-1)^{n + 1} + 2^{n + 1}}{(-1)^n + 2^n}
limn→∞(−1)n+2n(−1)n+1+2n+1
- 解:分子分母同时除以 2 n 2^n 2n,得到 lim n → ∞ ( − 1 2 ) n ⋅ ( − 1 ) + 2 ( − 1 2 ) n + 1 \lim_{n \rightarrow \infty} \frac{(-\frac{1}{2})^n \cdot (-1) + 2}{(-\frac{1}{2})^n + 1} limn→∞(−21)n+1(−21)n⋅(−1)+2。因为 ∣ − 1 2 ∣ < 1 \vert -\frac{1}{2}\vert<1 ∣−21∣<1,所以 lim n → ∞ ( − 1 2 ) n = 0 \lim_{n \rightarrow \infty} (-\frac{1}{2})^n = 0 limn→∞(−21)n=0,则极限为 0 × ( − 1 ) + 2 0 + 1 = 2 \frac{0 \times (-1) + 2}{0 + 1}=2 0+10×(−1)+2=2。
2. 无限项和的极限
-
利用前 n n n项和的极限,即 lim n → ∞ S n = lim n → ∞ ( x 1 + x 2 + ⋯ + x n ) = S \lim_{n \rightarrow \infty} S_n = \lim_{n \rightarrow \infty} (x_1 + x_2 + \cdots + x_n) = S limn→∞Sn=limn→∞(x1+x2+⋯+xn)=S
- 例:计算极限:
- lim n → ∞ ( 1 1 × 2 + 1 2 × 3 + ⋯ + 1 n × ( n + 1 ) ) \lim_{n \rightarrow \infty} (\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \cdots + \frac{1}{n \times (n + 1)}) limn→∞(1×21+2×31+⋯+n×(n+1)1)
- 解:因为 1 n ( n + 1 ) = 1 n − 1 n + 1 \frac{1}{n(n + 1)}=\frac{1}{n}-\frac{1}{n + 1} n(n+1)1=n1−n+11,所以 S n = ( 1 − 1 2 ) + ( 1 2 − 1 3 ) + ⋯ + ( 1 n − 1 n + 1 ) = 1 − 1 n + 1 S_n = (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + \cdots + (\frac{1}{n} - \frac{1}{n + 1}) = 1 - \frac{1}{n + 1} Sn=(1−21)+(21−31)+⋯+(n1−n+11)=1−n+11,则 lim n → ∞ ( 1 1 × 2 + 1 2 × 3 + ⋯ + 1 n × ( n + 1 ) ) = lim n → ∞ ( 1 − 1 n + 1 ) = 1 − 0 = 1 \lim_{n \rightarrow \infty} (\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \cdots + \frac{1}{n \times (n + 1)})=\lim_{n \rightarrow \infty}(1 - \frac{1}{n + 1}) = 1 - 0 = 1 limn→∞(1×21+2×31+⋯+n×(n+1)1)=limn→∞(1−n+11)=1−0=1。
- lim n → ∞ ( 1 + 1 2 + 1 2 2 + ⋯ + 1 2 n ) \lim_{n \rightarrow \infty} (1 + \frac{1}{2} + \frac{1}{2^2} + \cdots + \frac{1}{2^n}) limn→∞(1+21+221+⋯+2n1)
- 解:这是首项 a 1 = 1 a_1 = 1 a1=1,公比 q = 1 2 q=\frac{1}{2} q=21的等比数列的前 n + 1 n + 1 n+1项和(这里项数是 n + 1 n + 1 n+1项),根据等比数列求和公式 S n + 1 = a 1 ( 1 − q n + 1 ) 1 − q S_{n + 1}=\frac{a_1(1 - q^{n + 1})}{1 - q} Sn+1=1−qa1(1−qn+1),可得 S n + 1 = 1 × ( 1 − ( 1 2 ) n + 1 ) 1 − 1 2 = 2 ( 1 − ( 1 2 ) n + 1 ) S_{n + 1}=\frac{1\times(1 - (\frac{1}{2})^{n + 1})}{1 - \frac{1}{2}} = 2(1 - (\frac{1}{2})^{n + 1}) Sn+1=1−211×(1−(21)n+1)=2(1−(21)n+1),所以 lim n → ∞ ( 1 + 1 2 + 1 2 2 + ⋯ + 1 2 n ) = lim n → ∞ 2 ( 1 − ( 1 2 ) n + 1 ) = 2 − 0 = 2 \lim_{n \rightarrow \infty} (1 + \frac{1}{2} + \frac{1}{2^2} + \cdots + \frac{1}{2^n})=\lim_{n \rightarrow \infty}2(1 - (\frac{1}{2})^{n + 1}) = 2 - 0 = 2 limn→∞(1+21+221+⋯+2n1)=limn→∞2(1−(21)n+1)=2−0=2。
- lim n → ∞ ( 2 × 2 4 × 2 8 × ⋯ × 2 2 n ) \lim_{n \rightarrow \infty} (\sqrt{2} \times \sqrt[4]{2} \times \sqrt[8]{2} \times \cdots \times \sqrt[2^n]{2}) limn→∞(2×42×82×⋯×2n2)
- 解:将各项化为以 2 2 2为底的指数形式, 2 = 2 1 2 \sqrt{2}=2^{\frac{1}{2}} 2=221, 2 4 = 2 1 4 \sqrt[4]{2}=2^{\frac{1}{4}} 42=241, ⋯ \cdots ⋯, 2 2 n = 2 1 2 n \sqrt[2^n]{2}=2^{\frac{1}{2^n}} 2n2=22n1,则原式 = 2 1 2 + 1 4 + ⋯ + 1 2 n =2^{\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^n}} =221+41+⋯+2n1。由等比数列求和公式可知 1 2 + 1 4 + ⋯ + 1 2 n = 1 2 ( 1 − ( 1 2 ) n ) 1 − 1 2 = 1 − ( 1 2 ) n \frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^n}=\frac{\frac{1}{2}(1 - (\frac{1}{2})^n)}{1 - \frac{1}{2}} = 1 - (\frac{1}{2})^n 21+41+⋯+2n1=1−2121(1−(21)n)=1−(21)n,所以 lim n → ∞ 2 1 2 + 1 4 + ⋯ + 1 2 n = lim n → ∞ 2 1 − ( 1 2 ) n = 2 1 − 0 = 2 \lim_{n \rightarrow \infty}2^{\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^n}}=\lim_{n \rightarrow \infty}2^{1 - (\frac{1}{2})^n}=2^{1 - 0}=2 limn→∞221+41+⋯+2n1=limn→∞21−(21)n=21−0=2。
- 例:计算极限:
-
利用迫敛性
- 例:计算
lim
n
→
∞
(
1
n
2
+
1
+
1
n
2
+
2
+
⋯
+
1
n
2
+
n
)
\lim_{n \rightarrow \infty} (\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \cdots + \frac{1}{\sqrt{n^2 + n}})
limn→∞(n2+11+n2+21+⋯+n2+n1)
- 解:
因为 n n 2 + n ≤ 1 n 2 + 1 + 1 n 2 + 2 + ⋯ + 1 n 2 + n ≤ n n 2 + 1 \frac{n}{\sqrt{n^2 + n}} \leq \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \cdots + \frac{1}{\sqrt{n^2 + n}} \leq \frac{n}{\sqrt{n^2 + 1}} n2+nn≤n2+11+n2+21+⋯+n2+n1≤n2+1n。
对于 lim n → ∞ n n 2 + n \lim_{n \rightarrow \infty}\frac{n}{\sqrt{n^2 + n}} limn→∞n2+nn,分子分母同时除以 n n n,可得 lim n → ∞ 1 1 + 1 n \lim_{n \rightarrow \infty}\frac{1}{\sqrt{1 + \frac{1}{n}}} limn→∞1+n11,因为 lim n → ∞ 1 n = 0 \lim_{n \rightarrow \infty}\frac{1}{n} = 0 limn→∞n1=0,所以 lim n → ∞ n n 2 + n = 1 \lim_{n \rightarrow \infty}\frac{n}{\sqrt{n^2 + n}} = 1 limn→∞n2+nn=1。
对于 lim n → ∞ n n 2 + 1 \lim_{n \rightarrow \infty}\frac{n}{\sqrt{n^2 + 1}} limn→∞n2+1n,同样分子分母同时除以 n n n,得到 lim n → ∞ 1 1 + 1 n 2 \lim_{n \rightarrow \infty}\frac{1}{\sqrt{1 + \frac{1}{n^2}}} limn→∞1+n211,由于 lim n → ∞ 1 n 2 = 0 \lim_{n \rightarrow \infty}\frac{1}{n^2} = 0 limn→∞n21=0,所以 lim n → ∞ n n 2 + 1 = 1 \lim_{n \rightarrow \infty}\frac{n}{\sqrt{n^2 + 1}} = 1 limn→∞n2+1n=1。
由迫敛性可知, lim n → ∞ ( 1 n 2 + 1 + 1 n 2 + 2 + ⋯ + 1 n 2 + n ) = 1 \lim_{n \rightarrow \infty}(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \cdots + \frac{1}{\sqrt{n^2 + n}}) = 1 limn→∞(n2+11+n2+21+⋯+n2+n1)=1。
- 解:
课堂练习
计算下列极限:
-
lim
n
→
∞
n
n
+
1
\lim_{n \rightarrow \infty}\frac{\sqrt{n}}{\sqrt{n} + 1}
limn→∞n+1n
- 解:分子分母同时除以 n \sqrt{n} n,得到 lim n → ∞ 1 1 + 1 n \lim_{n \rightarrow \infty}\frac{1}{1 + \frac{1}{\sqrt{n}}} limn→∞1+n11。因为 lim n → ∞ 1 n = 0 \lim_{n \rightarrow \infty}\frac{1}{\sqrt{n}} = 0 limn→∞n1=0,所以该极限值为 1 1 + 0 = 1 \frac{1}{1 + 0} = 1 1+01=1。
-
lim
n
→
∞
n
+
1
n
2
−
1
\lim_{n \rightarrow \infty}\frac{n + 1}{n^2 - 1}
limn→∞n2−1n+1
- 解:对原式进行化简, n + 1 n 2 − 1 = n + 1 ( n + 1 ) ( n − 1 ) = 1 n − 1 \frac{n + 1}{n^2 - 1}=\frac{n + 1}{(n + 1)(n - 1)}=\frac{1}{n - 1} n2−1n+1=(n+1)(n−1)n+1=n−11( n e q − 1 n eq - 1 neq−1),当 n → ∞ n \rightarrow \infty n→∞时, lim n → ∞ 1 n − 1 = 0 \lim_{n \rightarrow \infty}\frac{1}{n - 1} = 0 limn→∞n−11=0。
-
lim
n
→
∞
(
1
+
2
n
+
3
n
)
1
n
\lim_{n \rightarrow \infty}(1 + 2^n + 3^n)^{\frac{1}{n}}
limn→∞(1+2n+3n)n1:
- 解:因为
3
n
<
1
+
2
n
+
3
n
<
3
×
3
n
3^n\lt1 + 2^n + 3^n\lt3\times3^n
3n<1+2n+3n<3×3n,两边同时开
n
n
n次方可得
3
<
(
1
+
2
n
+
3
n
)
1
n
<
3
×
3
1
n
3\lt(1 + 2^n + 3^n)^{\frac{1}{n}}\lt3\times3^{\frac{1}{n}}
3<(1+2n+3n)n1<3×3n1。
对于 lim n → ∞ 3 1 n \lim_{n \rightarrow \infty}3^{\frac{1}{n}} limn→∞3n1,令 y = 3 1 n y = 3^{\frac{1}{n}} y=3n1,则 ln y = 1 n ln 3 \ln y=\frac{1}{n}\ln 3 lny=n1ln3,当 n → ∞ n \rightarrow \infty n→∞时, lim n → ∞ 1 n ln 3 = 0 \lim_{n \rightarrow \infty}\frac{1}{n}\ln 3 = 0 limn→∞n1ln3=0,根据对数函数的连续性 lim n → ∞ y = e 0 = 1 \lim_{n \rightarrow \infty}y = e^0 = 1 limn→∞y=e0=1,即 lim n → ∞ 3 1 n = 1 \lim_{n \rightarrow \infty}3^{\frac{1}{n}} = 1 limn→∞3n1=1。
由迫敛性可知 lim n → ∞ ( 1 + 2 n + 3 n ) 1 n = 3 \lim_{n \rightarrow \infty}(1 + 2^n + 3^n)^{\frac{1}{n}} = 3 limn→∞(1+2n+3n)n1=3。
- 解:因为
3
n
<
1
+
2
n
+
3
n
<
3
×
3
n
3^n\lt1 + 2^n + 3^n\lt3\times3^n
3n<1+2n+3n<3×3n,两边同时开
n
n
n次方可得
3
<
(
1
+
2
n
+
3
n
)
1
n
<
3
×
3
1
n
3\lt(1 + 2^n + 3^n)^{\frac{1}{n}}\lt3\times3^{\frac{1}{n}}
3<(1+2n+3n)n1<3×3n1。
-
lim
n
→
∞
(
1
−
1
2
)
(
1
−
1
3
)
⋯
(
1
−
1
n
)
\lim_{n \rightarrow \infty}(1 - \frac{1}{2})(1 - \frac{1}{3})\cdots(1 - \frac{1}{n})
limn→∞(1−21)(1−31)⋯(1−n1)
- 解:先化简式子, ( 1 − 1 2 ) ( 1 − 1 3 ) ⋯ ( 1 − 1 n ) = 1 2 × 2 3 × ⋯ × n − 1 n = 1 n (1 - \frac{1}{2})(1 - \frac{1}{3})\cdots(1 - \frac{1}{n})=\frac{1}{2}\times\frac{2}{3}\times\cdots\times\frac{n - 1}{n}=\frac{1}{n} (1−21)(1−31)⋯(1−n1)=21×32×⋯×nn−1=n1,当 n → ∞ n \rightarrow \infty n→∞时, lim n → ∞ 1 n = 0 \lim_{n \rightarrow \infty}\frac{1}{n} = 0 limn→∞n1=0。
-
lim
n
→
∞
n
(
1
n
2
+
1
+
1
n
2
+
2
+
⋯
+
1
n
2
+
n
)
\lim_{n \rightarrow \infty}n(\frac{1}{n^2 + 1} + \frac{1}{n^2 + 2} + \cdots + \frac{1}{n^2 + n})
limn→∞n(n2+11+n2+21+⋯+n2+n1)
- 解:因为
n
n
2
+
n
≤
n
(
1
n
2
+
1
+
1
n
2
+
2
+
⋯
+
1
n
2
+
n
)
≤
n
n
2
+
1
\frac{n}{n^2 + n}\leq n(\frac{1}{n^2 + 1} + \frac{1}{n^2 + 2} + \cdots + \frac{1}{n^2 + n})\leq\frac{n}{n^2 + 1}
n2+nn≤n(n2+11+n2+21+⋯+n2+n1)≤n2+1n。
对于 lim n → ∞ n n 2 + n \lim_{n \rightarrow \infty}\frac{n}{n^2 + n} limn→∞n2+nn,分子分母同时除以 n 2 n^2 n2,得 lim n → ∞ 1 n 1 + 1 n = 0 \lim_{n \rightarrow \infty}\frac{\frac{1}{n}}{1 + \frac{1}{n}} = 0 limn→∞1+n1n1=0;
对于 lim n → ∞ n n 2 + 1 \lim_{n \rightarrow \infty}\frac{n}{n^2 + 1} limn→∞n2+1n,分子分母同时除以 n 2 n^2 n2,得 lim n → ∞ 1 n 1 + 1 n 2 = 0 \lim_{n \rightarrow \infty}\frac{\frac{1}{n}}{1 + \frac{1}{n^2}} = 0 limn→∞1+n21n1=0。
由迫敛性可得 lim n → ∞ n ( 1 n 2 + 1 + 1 n 2 + 2 + ⋯ + 1 n 2 + n ) = 0 \lim_{n \rightarrow \infty}n(\frac{1}{n^2 + 1} + \frac{1}{n^2 + 2} + \cdots + \frac{1}{n^2 + n}) = 0 limn→∞n(n2+11+n2+21+⋯+n2+n1)=0。
- 解:因为
n
n
2
+
n
≤
n
(
1
n
2
+
1
+
1
n
2
+
2
+
⋯
+
1
n
2
+
n
)
≤
n
n
2
+
1
\frac{n}{n^2 + n}\leq n(\frac{1}{n^2 + 1} + \frac{1}{n^2 + 2} + \cdots + \frac{1}{n^2 + n})\leq\frac{n}{n^2 + 1}
n2+nn≤n(n2+11+n2+21+⋯+n2+n1)≤n2+1n。
作业
- 设
x
n
=
0.11
⋯
1
x_n = 0.11\cdots1
xn=0.11⋯1(
n
n
n个
1
1
1),求
lim
n
→
∞
x
n
\lim_{n \rightarrow \infty}x_n
limn→∞xn。
- 解: x n = 0.1 + 0.01 + 0.001 + ⋯ + 0. 0 ⋯ 0 ⏟ n − 1 个 0 1 x_n = 0.1 + 0.01 + 0.001 + \cdots + 0. \underbrace{0\cdots0}_{n - 1个0}1 xn=0.1+0.01+0.001+⋯+0.n−1个0 0⋯01,这是首项 a 1 = 0.1 a_1 = 0.1 a1=0.1,公比 q = 0.1 q = 0.1 q=0.1的等比数列的前 n n n项和。根据等比数列求和公式 S n = a 1 ( 1 − q n ) 1 − q S_n=\frac{a_1(1 - q^n)}{1 - q} Sn=1−qa1(1−qn),可得 x n = 0.1 × ( 1 − 0. 1 n ) 1 − 0.1 = 1 9 ( 1 − 0. 1 n ) x_n=\frac{0.1\times(1 - 0.1^n)}{1 - 0.1}=\frac{1}{9}(1 - 0.1^n) xn=1−0.10.1×(1−0.1n)=91(1−0.1n)。当 n → ∞ n \rightarrow \infty n→∞时, lim n → ∞ 0. 1 n = 0 \lim_{n \rightarrow \infty}0.1^n = 0 limn→∞0.1n=0,所以 lim n → ∞ x n = 1 9 ( 1 − 0 ) = 1 9 \lim_{n \rightarrow \infty}x_n=\frac{1}{9}(1 - 0)=\frac{1}{9} limn→∞xn=91(1−0)=91。
- 计算下列数列极限:
-
lim
n
→
∞
(
n
+
3
−
n
)
\lim_{n \rightarrow \infty}(\sqrt{n + 3} - \sqrt{n})
limn→∞(n+3−n)
- 解:分子有理化, n + 3 − n = ( n + 3 − n ) ( n + 3 + n ) n + 3 + n = 3 n + 3 + n \sqrt{n + 3} - \sqrt{n}=\frac{(\sqrt{n + 3} - \sqrt{n})(\sqrt{n + 3} + \sqrt{n})}{\sqrt{n + 3} + \sqrt{n}}=\frac{3}{\sqrt{n + 3} + \sqrt{n}} n+3−n=n+3+n(n+3−n)(n+3+n)=n+3+n3。当 n → ∞ n \rightarrow \infty n→∞时, lim n → ∞ 3 n + 3 + n = 0 \lim_{n \rightarrow \infty}\frac{3}{\sqrt{n + 3} + \sqrt{n}} = 0 limn→∞n+3+n3=0。
-
lim
n
→
∞
3
n
+
5
n
2
+
n
+
4
\lim_{n \rightarrow \infty}\frac{3n + 5}{\sqrt{n^2 + n + 4}}
limn→∞n2+n+43n+5
- 解:分子分母同时除以 n n n,得到 lim n → ∞ 3 + 5 n 1 + 1 n + 4 n 2 \lim_{n \rightarrow \infty}\frac{3 + \frac{5}{n}}{\sqrt{1 + \frac{1}{n} + \frac{4}{n^2}}} limn→∞1+n1+n243+n5。因为 lim n → ∞ 5 n = 0 \lim_{n \rightarrow \infty}\frac{5}{n} = 0 limn→∞n5=0, lim n → ∞ 1 n = 0 \lim_{n \rightarrow \infty}\frac{1}{n} = 0 limn→∞n1=0, lim n → ∞ 4 n 2 = 0 \lim_{n \rightarrow \infty}\frac{4}{n^2} = 0 limn→∞n24=0,所以极限值为 3 + 0 1 + 0 + 0 = 3 \frac{3 + 0}{\sqrt{1 + 0 + 0}} = 3 1+0+03+0=3。
-
lim
n
→
∞
(
n
+
1
)
(
n
+
2
)
(
n
+
3
)
5
n
3
\lim_{n \rightarrow \infty}\frac{(n + 1)(n + 2)(n + 3)}{5n^3}
limn→∞5n3(n+1)(n+2)(n+3)
- 解:将分子展开 ( n + 1 ) ( n + 2 ) ( n + 3 ) = n 3 + 6 n 2 + 11 n + 6 (n + 1)(n + 2)(n + 3)=n^3 + 6n^2 + 11n + 6 (n+1)(n+2)(n+3)=n3+6n2+11n+6,则原式变为 lim n → ∞ n 3 + 6 n 2 + 11 n + 6 5 n 3 \lim_{n \rightarrow \infty}\frac{n^3 + 6n^2 + 11n + 6}{5n^3} limn→∞5n3n3+6n2+11n+6。分子分母同时除以 n 3 n^3 n3,得 lim n → ∞ ( 1 5 + 6 5 n + 11 5 n 2 + 6 5 n 3 ) \lim_{n \rightarrow \infty}(\frac{1}{5}+\frac{6}{5n}+\frac{11}{5n^2}+\frac{6}{5n^3}) limn→∞(51+5n6+5n211+5n36)。因为 lim n → ∞ 1 n = 0 \lim_{n \rightarrow \infty}\frac{1}{n} = 0 limn→∞n1=0, lim n → ∞ 1 n 2 = 0 \lim_{n \rightarrow \infty}\frac{1}{n^2} = 0 limn→∞n21=0, lim n → ∞ 1 n 3 = 0 \lim_{n \rightarrow \infty}\frac{1}{n^3} = 0 limn→∞n31=0,所以极限值为 1 5 + 0 + 0 + 0 = 1 5 \frac{1}{5}+0 + 0 + 0=\frac{1}{5} 51+0+0+0=51。
-
lim
n
→
∞
1
+
2
+
3
+
⋯
+
(
n
−
1
)
n
2
\lim_{n \rightarrow \infty}\frac{1 + 2 + 3 + \cdots + (n - 1)}{n^2}
limn→∞n21+2+3+⋯+(n−1)
- 解:由等差数列求和公式 1 + 2 + 3 + ⋯ + ( n − 1 ) = ( n − 1 ) n 2 1 + 2 + 3 + \cdots + (n - 1)=\frac{(n - 1)n}{2} 1+2+3+⋯+(n−1)=2(n−1)n,则原式为 lim n → ∞ ( n − 1 ) n 2 n 2 = lim n → ∞ n 2 − n 2 n 2 \lim_{n \rightarrow \infty}\frac{\frac{(n - 1)n}{2}}{n^2}=\lim_{n \rightarrow \infty}\frac{n^2 - n}{2n^2} limn→∞n22(n−1)n=limn→∞2n2n2−n。分子分母同时除以 n 2 n^2 n2,得 lim n → ∞ ( 1 2 − 1 2 n ) = 1 2 − 0 = 1 2 \lim_{n \rightarrow \infty}(\frac{1}{2}-\frac{1}{2n})=\frac{1}{2}-0=\frac{1}{2} limn→∞(21−2n1)=21−0=21。
-
lim
n
→
∞
(
1
n
2
+
n
+
1
+
2
n
2
+
n
+
2
+
⋯
+
n
n
2
+
n
+
n
)
\lim_{n \rightarrow \infty}(\frac{1}{n^2 + n + 1} + \frac{2}{n^2 + n + 2} + \cdots + \frac{n}{n^2 + n + n})
limn→∞(n2+n+11+n2+n+22+⋯+n2+n+nn)
- 解:因为
1
+
2
+
⋯
+
n
n
2
+
n
+
n
≤
1
n
2
+
n
+
1
+
2
n
2
+
n
+
2
+
⋯
+
n
n
2
+
n
+
n
≤
1
+
2
+
⋯
+
n
n
2
+
n
+
1
\frac{1 + 2 + \cdots + n}{n^2 + n + n} \leq \frac{1}{n^2 + n + 1} + \frac{2}{n^2 + n + 2} + \cdots + \frac{n}{n^2 + n + n} \leq \frac{1 + 2 + \cdots + n}{n^2 + n + 1}
n2+n+n1+2+⋯+n≤n2+n+11+n2+n+22+⋯+n2+n+nn≤n2+n+11+2+⋯+n。
由等差数列求和公式可知 1 + 2 + ⋯ + n = n ( n + 1 ) 2 1 + 2 + \cdots + n = \frac{n(n + 1)}{2} 1+2+⋯+n=2n(n+1)。
对于 lim n → ∞ n ( n + 1 ) 2 n 2 + n + n \lim_{n \to \infty}\frac{\frac{n(n + 1)}{2}}{n^2 + n + n} limn→∞n2+n+n2n(n+1),分子分母同时除以 n 2 n^2 n2:
lim n → ∞ n ( n + 1 ) 2 n 2 + 2 n = lim n → ∞ 1 2 ( 1 + 1 n ) 1 + 2 n = 1 2 ( 1 + 0 ) 1 + 0 = 1 2 \begin{align*} \lim_{n \to \infty}\frac{\frac{n(n + 1)}{2}}{n^2 + 2n}&=\lim_{n \to \infty}\frac{\frac{1}{2}(1 + \frac{1}{n})}{1 + \frac{2}{n}}\\ &=\frac{\frac{1}{2}(1 + 0)}{1 + 0}\\ &=\frac{1}{2} \end{align*} n→∞limn2+2n2n(n+1)=n→∞lim1+n221(1+n1)=1+021(1+0)=21
对于 lim n → ∞ n ( n + 1 ) 2 n 2 + n + 1 \lim_{n \to \infty}\frac{\frac{n(n + 1)}{2}}{n^2 + n + 1} limn→∞n2+n+12n(n+1),分子分母同时除以 n 2 n^2 n2:
lim n → ∞ n ( n + 1 ) 2 n 2 + n + 1 = lim n → ∞ 1 2 ( 1 + 1 n ) 1 + 1 n + 1 n 2 = 1 2 ( 1 + 0 ) 1 + 0 + 0 = 1 2 \begin{align*} \lim_{n \to \infty}\frac{\frac{n(n + 1)}{2}}{n^2 + n + 1}&=\lim_{n \to \infty}\frac{\frac{1}{2}(1 + \frac{1}{n})}{1 + \frac{1}{n}+\frac{1}{n^2}}\\ &=\frac{\frac{1}{2}(1 + 0)}{1 + 0 + 0}\\ &=\frac{1}{2} \end{align*} n→∞limn2+n+12n(n+1)=n→∞lim1+n1+n2121(1+n1)=1+0+021(1+0)=21
由迫敛性可知 lim n → ∞ ( 1 n 2 + n + 1 + 2 n 2 + n + 2 + ⋯ + n n 2 + n + n ) = 1 2 \lim_{n \to \infty}(\frac{1}{n^2 + n + 1} + \frac{2}{n^2 + n + 2} + \cdots + \frac{n}{n^2 + n + n})=\frac{1}{2} limn→∞(n2+n+11+n2+n+22+⋯+n2+n+nn)=21
- 解:因为
1
+
2
+
⋯
+
n
n
2
+
n
+
n
≤
1
n
2
+
n
+
1
+
2
n
2
+
n
+
2
+
⋯
+
n
n
2
+
n
+
n
≤
1
+
2
+
⋯
+
n
n
2
+
n
+
1
\frac{1 + 2 + \cdots + n}{n^2 + n + n} \leq \frac{1}{n^2 + n + 1} + \frac{2}{n^2 + n + 2} + \cdots + \frac{n}{n^2 + n + n} \leq \frac{1 + 2 + \cdots + n}{n^2 + n + 1}
n2+n+n1+2+⋯+n≤n2+n+11+n2+n+22+⋯+n2+n+nn≤n2+n+11+2+⋯+n。
-
lim
n
→
∞
(
n
+
3
−
n
)
\lim_{n \rightarrow \infty}(\sqrt{n + 3} - \sqrt{n})
limn→∞(n+3−n)