高等数学第一章---函数与极限(1.2 数列的极限2)

高等数学第一章—函数与极限(1.2 数列的极限1)

§1.2 数列的极限2

4. 子列

在数列 { a n } \{a_n\} {an}中任意抽取无穷多项,并保持这些项在原数列中的先后次序,得到的一个数列称为原数列 { a n } \{a_n\} {an}的子列 { a n k } \{a_{n_k}\} {ank}。例如奇子列 { a 2 k + 1 } \{a_{2k + 1}\} {a2k+1},偶子列 { a 2 k } \{a_{2k}\} {a2k}

结论:若数列 { a n } \{a_n\} {an}收敛于 A A A,则 { a n } \{a_n\} {an}的任一子列也收敛于 A A A

  1. 若数列 { a n } \{a_n\} {an}的两个不同子列收敛于不同的极限,则数列 { a n } \{a_n\} {an}发散。例如: a n = ( − 1 ) n + 1 a_n = (-1)^{n + 1} an=(1)n+1 ,其奇子列 { a 2 k − 1 } \{a_{2k - 1}\} {a2k1}中, a 2 k − 1 = ( − 1 ) 2 k − 1 + 1 = 1 a_{2k - 1}=(-1)^{2k - 1 + 1}=1 a2k1=(1)2k1+1=1 k ∈ N + k\in N^+ kN+),极限为 1 1 1;偶子列 { a 2 k } \{a_{2k}\} {a2k}中, a 2 k = ( − 1 ) 2 k + 1 = − 1 a_{2k}=(-1)^{2k + 1}=-1 a2k=(1)2k+1=1 k ∈ N + k\in N^+ kN+),极限为 − 1 -1 1,所以原数列 { a n } \{a_n\} {an}发散。
  2. 若数列 { a n } \{a_n\} {an}的奇子列与偶子列收敛于同一值 A A A,则 { a n } \{a_n\} {an}也收敛于 A A A

证明:设 lim ⁡ n → ∞ a 2 n − 1 = a \lim_{n \rightarrow \infty} a_{2n - 1} = a limna2n1=a lim ⁡ n → ∞ a 2 n = a \lim_{n \rightarrow \infty} a_{2n} = a limna2n=a,即 ∀ ε > 0 \forall \varepsilon > 0 ε>0 ∃ N 1 ∈ N + \exists N_1 \in N^{+} N1N+ N 2 ∈ N + N_2 \in N^{+} N2N+,当 n > N 1 n > N_1 n>N1时,有 ∣ a 2 n − 1 − a ∣ < ε \vert a_{2n - 1} - a\vert < \varepsilon a2n1a<ε;当 n > N 2 n > N_2 n>N2时,有 ∣ a 2 n − a ∣ < ε \vert a_{2n} - a\vert < \varepsilon a2na<ε。这意味着在数列 { a n } \{a_n\} {an}中,从 2 N 1 − 1 2N_1 - 1 2N11项以后的所有奇数项都满足 ∣ a n − a ∣ < ε \vert a_n - a\vert < \varepsilon ana<ε,从 2 N 2 2N_2 2N2项以后的所有偶数项都满足 ∣ a n − a ∣ < ε \vert a_n - a\vert < \varepsilon ana<ε。因此,取 N = max ⁡ { 2 N 1 − 1 , 2 N 2 } N = \max\{2N_1 - 1, 2N_2\} N=max{2N11,2N2},当 n > N n > N n>N时有 ∣ a n − a ∣ < ε \vert a_n - a\vert < \varepsilon ana<ε,得证。

例1 下列数列收敛的是:

  1. f ( n ) = ( − 1 ) n + 1 n n + 1 f(n) = (-1)^{n + 1}\frac{n}{n + 1} f(n)=(1)n+1n+1n
  2. f ( n ) = { 1 n + 1 n 为奇数 1 n − 1 n 为偶数 f(n) = \begin{cases} \frac{1}{n} + 1 & n为奇数 \\ \frac{1}{n} - 1 & n为偶数 \end{cases} f(n)={n1+1n11n为奇数n为偶数
  3. f ( n ) = { 1 n n 为奇数 1 n + 1 n 为偶数 f(n) = \begin{cases} \frac{1}{n} & n为奇数 \\ \frac{1}{n + 1} & n为偶数 \end{cases} f(n)={n1n+11n为奇数n为偶数
  4. f ( n ) = { 1 + 2 n 2 n n 为奇数 1 − 2 n 2 n n 为偶数 f(n) = \begin{cases} \frac{1 + 2^n}{2^n} & n为奇数 \\ \frac{1 - 2^n}{2^n} & n为偶数 \end{cases} f(n)={2n1+2n2n12nn为奇数n为偶数

解析

  • 对于 f ( n ) = ( − 1 ) n + 1 n n + 1 f(n) = (-1)^{n + 1}\frac{n}{n + 1} f(n)=(1)n+1n+1n,当 n n n为奇数时, f ( n ) = n n + 1 = 1 − 1 n + 1 f(n)=\frac{n}{n + 1}=1-\frac{1}{n + 1} f(n)=n+1n=1n+11 lim ⁡ n → ∞ ( 1 − 1 n + 1 ) = 1 \lim_{n\rightarrow\infty}(1-\frac{1}{n + 1}) = 1 limn(1n+11)=1;当 n n n为偶数时, f ( n ) = − n n + 1 = − 1 + 1 n + 1 f(n)=-\frac{n}{n + 1}=-1+\frac{1}{n + 1} f(n)=n+1n=1+n+11 lim ⁡ n → ∞ ( − 1 + 1 n + 1 ) = − 1 \lim_{n\rightarrow\infty}(-1+\frac{1}{n + 1}) = -1 limn(1+n+11)=1,奇子列和偶子列极限不同,所以该数列发散。
  • 对于 f ( n ) = { 1 n + 1 n 为奇数 1 n − 1 n 为偶数 f(n) = \begin{cases} \frac{1}{n} + 1 & n为奇数 \\ \frac{1}{n} - 1 & n为偶数 \end{cases} f(n)={n1+1n11n为奇数n为偶数,奇子列 lim ⁡ k → ∞ ( 1 2 k − 1 + 1 ) = 1 \lim_{k\rightarrow\infty}(\frac{1}{2k - 1}+1)=1 limk(2k11+1)=1,偶子列 lim ⁡ k → ∞ ( 1 2 k − 1 ) = − 1 \lim_{k\rightarrow\infty}(\frac{1}{2k}-1)= - 1 limk(2k11)=1,奇子列和偶子列极限不同,该数列发散。
  • 对于 f ( n ) = { 1 n n 为奇数 1 n + 1 n 为偶数 f(n) = \begin{cases} \frac{1}{n} & n为奇数 \\ \frac{1}{n + 1} & n为偶数 \end{cases} f(n)={n1n+11n为奇数n为偶数,奇子列 lim ⁡ k → ∞ 1 2 k − 1 = 0 \lim_{k\rightarrow\infty}\frac{1}{2k - 1}=0 limk2k11=0,偶子列 lim ⁡ k → ∞ 1 2 k + 1 = 0 \lim_{k\rightarrow\infty}\frac{1}{2k + 1}=0 limk2k+11=0,奇子列和偶子列极限相同,所以该数列收敛于 0 0 0
  • 对于 f ( n ) = { 1 + 2 n 2 n n 为奇数 1 − 2 n 2 n n 为偶数 f(n) = \begin{cases} \frac{1 + 2^n}{2^n} & n为奇数 \\ \frac{1 - 2^n}{2^n} & n为偶数 \end{cases} f(n)={2n1+2n2n12nn为奇数n为偶数,奇子列 lim ⁡ k → ∞ 1 + 2 2 k − 1 2 2 k − 1 = lim ⁡ k → ∞ ( 1 2 2 k − 1 + 1 ) = 1 \lim_{k\rightarrow\infty}\frac{1 + 2^{2k - 1}}{2^{2k - 1}}=\lim_{k\rightarrow\infty}(\frac{1}{2^{2k - 1}} + 1)=1 limk22k11+22k1=limk(22k11+1)=1,偶子列 lim ⁡ k → ∞ 1 − 2 2 k 2 2 k = lim ⁡ k → ∞ ( 1 2 2 k − 1 ) = − 1 \lim_{k\rightarrow\infty}\frac{1 - 2^{2k}}{2^{2k}}=\lim_{k\rightarrow\infty}(\frac{1}{2^{2k}} - 1)= - 1 limk22k122k=limk(22k11)=1,奇子列和偶子列极限不同,该数列发散。所以收敛的是选项3。

例 2:
设数列 { x n } \{x_{n}\} {xn}的极限为 A A A,数列 { y n } \{y_{n}\} {yn}的极限为 B B B,且 A ≠ B A\neq B A=B,则数列 x 1 , y 1 , x 2 , y 2 , ⋯   , x n , y n , ⋯ x_{1},y_{1},x_{2},y_{2},\cdots,x_{n},y_{n},\cdots x1,y1,x2,y2,,xn,yn,的极限为
(1) A A A
(2) B B B
(3) A + B A + B A+B
(4) 不存在

5. 迫敛性

设数列 { x n } \{x_n\} {xn} { y n } \{y_n\} {yn}都以 A A A为极限,数列 { z n } \{z_n\} {zn}满足:存在 N ∈ N + N \in N^{+} NN+ ∀ n > N \forall n > N n>N时有 x n ≤ z n ≤ y n x_n \leq z_n \leq y_n xnznyn,则 lim ⁡ n → ∞ z n = A \lim_{n \rightarrow \infty} z_n = A limnzn=A

证明:由 lim ⁡ n → ∞ x n = A \lim_{n \rightarrow \infty} x_n = A limnxn=A可知, ∀ ε > 0 \forall \varepsilon > 0 ε>0 ∃ N 1 ∈ N + \exists N_1 \in N^{+} N1N+ ∀ n > N 1 \forall n > N_1 n>N1时有 ∣ x n − A ∣ < ε \vert x_n - A\vert < \varepsilon xnA<ε,即 x n > A − ε x_n > A - \varepsilon xn>Aε;由 lim ⁡ n → ∞ y n = A \lim_{n \rightarrow \infty} y_n = A limnyn=A可知,对上述 ε > 0 \varepsilon > 0 ε>0 ∃ N 2 ∈ N + \exists N_2 \in N^{+} N2N+ ∀ n > N 2 \forall n > N_2 n>N2时有 ∣ y n − A ∣ < ε \vert y_n - A\vert < \varepsilon ynA<ε,即 y n < A + ε y_n < A + \varepsilon yn<A+ε。又因为 x n ≤ z n ≤ y n x_n \leq z_n \leq y_n xnznyn,取 N = max ⁡ { N 1 , N 2 } N = \max\{N_1, N_2\} N=max{N1,N2},当 n > N n > N n>N时,有 A − ε < z n < A + ε A - \varepsilon < z_n < A + \varepsilon Aε<zn<A+ε,所以 lim ⁡ n → ∞ z n = A \lim_{n \rightarrow \infty} z_n = A limnzn=A

6. 数列极限的四则运算

lim ⁡ n → ∞ x n = A \lim_{n \rightarrow \infty} x_n = A limnxn=A lim ⁡ n → ∞ y n = B \lim_{n \rightarrow \infty} y_n = B limnyn=B,则:

  1. 加法与减法 lim ⁡ n → ∞ ( x n ± y n ) = A ± B \lim_{n \rightarrow \infty} (x_n \pm y_n) = A \pm B limn(xn±yn)=A±B
  2. 乘法 lim ⁡ n → ∞ ( x n ⋅ y n ) = A ⋅ B \lim_{n \rightarrow \infty} (x_n \cdot y_n) = A \cdot B limn(xnyn)=AB
  3. 除法 lim ⁡ n → ∞ x n y n = A B \lim_{n \rightarrow \infty} \frac{x_n}{y_n} = \frac{A}{B} limnynxn=BA B ≠ 0 B \neq 0 B=0) 。

三、数列极限的计算方法

1. 利用 lim ⁡ n → ∞ 1 n = 0 \lim_{n \rightarrow \infty} \frac{1}{n} = 0 limnn1=0 lim ⁡ n → ∞ q n = 0 ( ∣ q ∣ < 1 ) \lim_{n \rightarrow \infty} q^n = 0 (|q| < 1) limnqn=0(q<1)

例3:计算极限:

  1. lim ⁡ n → ∞ 2 n 3 − n + 1 3 n 3 + n 2 − n \lim_{n \rightarrow \infty} \frac{2n^3 - n + 1}{3n^3 + n^2 - n} limn3n3+n2n2n3n+1
    • :分子分母同时除以 n 3 n^3 n3,得到 lim ⁡ n → ∞ 2 − 1 n 2 + 1 n 3 3 + 1 n − 1 n 2 \lim_{n \rightarrow \infty} \frac{2 - \frac{1}{n^2} + \frac{1}{n^3}}{3 + \frac{1}{n} - \frac{1}{n^2}} limn3+n1n212n21+n31。因为 lim ⁡ n → ∞ 1 n = 0 \lim_{n \rightarrow \infty} \frac{1}{n} = 0 limnn1=0 lim ⁡ n → ∞ 1 n 2 = 0 \lim_{n \rightarrow \infty} \frac{1}{n^2} = 0 limnn21=0 lim ⁡ n → ∞ 1 n 3 = 0 \lim_{n \rightarrow \infty} \frac{1}{n^3} = 0 limnn31=0,所以原式 = 2 − 0 + 0 3 + 0 − 0 = 2 3 =\frac{2 - 0 + 0}{3 + 0 - 0}=\frac{2}{3} =3+0020+0=32
  2. lim ⁡ n → ∞ 3 n + 5 n 2 + n + 4 \lim_{n \rightarrow \infty} \frac{3n + 5}{\sqrt{n^2 + n + 4}} limnn2+n+4 3n+5
    • :分子分母同时除以 n n n,则原式变为 lim ⁡ n → ∞ 3 + 5 n 1 + 1 n + 4 n 2 \lim_{n \rightarrow \infty} \frac{3 + \frac{5}{n}}{\sqrt{1 + \frac{1}{n} + \frac{4}{n^2}}} limn1+n1+n24 3+n5。当 n → ∞ n \to \infty n时, 5 n → 0 \frac{5}{n}\to0 n50 1 n → 0 \frac{1}{n}\to0 n10 4 n 2 → 0 \frac{4}{n^2}\to0 n240,所以极限为 3 + 0 1 + 0 + 0 = 3 \frac{3 + 0}{\sqrt{1 + 0 + 0}} = 3 1+0+0 3+0=3
  3. lim ⁡ n → ∞ n 2 n + 1 \lim_{n \rightarrow \infty} \frac{n}{2n + 1} limn2n+1n
    • :分子分母同时除以 n n n,得 lim ⁡ n → ∞ 1 2 + 1 n \lim_{n \rightarrow \infty} \frac{1}{2 + \frac{1}{n}} limn2+n11,因为 lim ⁡ n → ∞ 1 n = 0 \lim_{n \rightarrow \infty} \frac{1}{n} = 0 limnn1=0,所以极限为 1 2 + 0 = 1 2 \frac{1}{2 + 0}=\frac{1}{2} 2+01=21
  4. lim ⁡ n → ∞ n ( n + 1 − n ) \lim_{n \rightarrow \infty} \sqrt{n} (\sqrt{n + 1} - \sqrt{n}) limnn (n+1 n )
    • :对式子进行分子有理化, n ( n + 1 − n ) = n ( n + 1 − n ) ( n + 1 + n ) n + 1 + n = n n + 1 + n \sqrt{n} (\sqrt{n + 1} - \sqrt{n})=\frac{\sqrt{n}(\sqrt{n + 1} - \sqrt{n})(\sqrt{n + 1} + \sqrt{n})}{\sqrt{n + 1} + \sqrt{n}}=\frac{\sqrt{n}}{\sqrt{n + 1} + \sqrt{n}} n (n+1 n )=n+1 +n n (n+1 n )(n+1 +n )=n+1 +n n ,分子分母同时除以 n \sqrt{n} n ,得到 lim ⁡ n → ∞ 1 1 + 1 n + 1 \lim_{n \rightarrow \infty} \frac{1}{\sqrt{1 + \frac{1}{n}} + 1} limn1+n1 +11,因为 lim ⁡ n → ∞ 1 n = 0 \lim_{n \rightarrow \infty} \frac{1}{n} = 0 limnn1=0,所以极限为 1 1 + 0 + 1 = 1 2 \frac{1}{\sqrt{1 + 0} + 1}=\frac{1}{2} 1+0 +11=21
  5. lim ⁡ n → ∞ ( − 1 ) n + 1 + 2 n + 1 ( − 1 ) n + 2 n \lim_{n \rightarrow \infty} \frac{(-1)^{n + 1} + 2^{n + 1}}{(-1)^n + 2^n} limn(1)n+2n(1)n+1+2n+1
    • :分子分母同时除以 2 n 2^n 2n,得到 lim ⁡ n → ∞ ( − 1 2 ) n ⋅ ( − 1 ) + 2 ( − 1 2 ) n + 1 \lim_{n \rightarrow \infty} \frac{(-\frac{1}{2})^n \cdot (-1) + 2}{(-\frac{1}{2})^n + 1} limn(21)n+1(21)n(1)+2。因为 ∣ − 1 2 ∣ < 1 \vert -\frac{1}{2}\vert<1 21<1,所以 lim ⁡ n → ∞ ( − 1 2 ) n = 0 \lim_{n \rightarrow \infty} (-\frac{1}{2})^n = 0 limn(21)n=0,则极限为 0 × ( − 1 ) + 2 0 + 1 = 2 \frac{0 \times (-1) + 2}{0 + 1}=2 0+10×(1)+2=2

2. 无限项和的极限

  1. 利用前 n n n项和的极限,即 lim ⁡ n → ∞ S n = lim ⁡ n → ∞ ( x 1 + x 2 + ⋯ + x n ) = S \lim_{n \rightarrow \infty} S_n = \lim_{n \rightarrow \infty} (x_1 + x_2 + \cdots + x_n) = S limnSn=limn(x1+x2++xn)=S

    • :计算极限:
      • lim ⁡ n → ∞ ( 1 1 × 2 + 1 2 × 3 + ⋯ + 1 n × ( n + 1 ) ) \lim_{n \rightarrow \infty} (\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \cdots + \frac{1}{n \times (n + 1)}) limn(1×21+2×31++n×(n+1)1)
      • :因为 1 n ( n + 1 ) = 1 n − 1 n + 1 \frac{1}{n(n + 1)}=\frac{1}{n}-\frac{1}{n + 1} n(n+1)1=n1n+11,所以 S n = ( 1 − 1 2 ) + ( 1 2 − 1 3 ) + ⋯ + ( 1 n − 1 n + 1 ) = 1 − 1 n + 1 S_n = (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + \cdots + (\frac{1}{n} - \frac{1}{n + 1}) = 1 - \frac{1}{n + 1} Sn=(121)+(2131)++(n1n+11)=1n+11,则 lim ⁡ n → ∞ ( 1 1 × 2 + 1 2 × 3 + ⋯ + 1 n × ( n + 1 ) ) = lim ⁡ n → ∞ ( 1 − 1 n + 1 ) = 1 − 0 = 1 \lim_{n \rightarrow \infty} (\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \cdots + \frac{1}{n \times (n + 1)})=\lim_{n \rightarrow \infty}(1 - \frac{1}{n + 1}) = 1 - 0 = 1 limn(1×21+2×31++n×(n+1)1)=limn(1n+11)=10=1
      • lim ⁡ n → ∞ ( 1 + 1 2 + 1 2 2 + ⋯ + 1 2 n ) \lim_{n \rightarrow \infty} (1 + \frac{1}{2} + \frac{1}{2^2} + \cdots + \frac{1}{2^n}) limn(1+21+221++2n1)
      • :这是首项 a 1 = 1 a_1 = 1 a1=1,公比 q = 1 2 q=\frac{1}{2} q=21的等比数列的前 n + 1 n + 1 n+1项和(这里项数是 n + 1 n + 1 n+1项),根据等比数列求和公式 S n + 1 = a 1 ( 1 − q n + 1 ) 1 − q S_{n + 1}=\frac{a_1(1 - q^{n + 1})}{1 - q} Sn+1=1qa1(1qn+1),可得 S n + 1 = 1 × ( 1 − ( 1 2 ) n + 1 ) 1 − 1 2 = 2 ( 1 − ( 1 2 ) n + 1 ) S_{n + 1}=\frac{1\times(1 - (\frac{1}{2})^{n + 1})}{1 - \frac{1}{2}} = 2(1 - (\frac{1}{2})^{n + 1}) Sn+1=1211×(1(21)n+1)=2(1(21)n+1),所以 lim ⁡ n → ∞ ( 1 + 1 2 + 1 2 2 + ⋯ + 1 2 n ) = lim ⁡ n → ∞ 2 ( 1 − ( 1 2 ) n + 1 ) = 2 − 0 = 2 \lim_{n \rightarrow \infty} (1 + \frac{1}{2} + \frac{1}{2^2} + \cdots + \frac{1}{2^n})=\lim_{n \rightarrow \infty}2(1 - (\frac{1}{2})^{n + 1}) = 2 - 0 = 2 limn(1+21+221++2n1)=limn2(1(21)n+1)=20=2
      • lim ⁡ n → ∞ ( 2 × 2 4 × 2 8 × ⋯ × 2 2 n ) \lim_{n \rightarrow \infty} (\sqrt{2} \times \sqrt[4]{2} \times \sqrt[8]{2} \times \cdots \times \sqrt[2^n]{2}) limn(2 ×42 ×82 ××2n2 )
      • :将各项化为以 2 2 2为底的指数形式, 2 = 2 1 2 \sqrt{2}=2^{\frac{1}{2}} 2 =221 2 4 = 2 1 4 \sqrt[4]{2}=2^{\frac{1}{4}} 42 =241 ⋯ \cdots 2 2 n = 2 1 2 n \sqrt[2^n]{2}=2^{\frac{1}{2^n}} 2n2 =22n1,则原式 = 2 1 2 + 1 4 + ⋯ + 1 2 n =2^{\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^n}} =221+41++2n1。由等比数列求和公式可知 1 2 + 1 4 + ⋯ + 1 2 n = 1 2 ( 1 − ( 1 2 ) n ) 1 − 1 2 = 1 − ( 1 2 ) n \frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^n}=\frac{\frac{1}{2}(1 - (\frac{1}{2})^n)}{1 - \frac{1}{2}} = 1 - (\frac{1}{2})^n 21+41++2n1=12121(1(21)n)=1(21)n,所以 lim ⁡ n → ∞ 2 1 2 + 1 4 + ⋯ + 1 2 n = lim ⁡ n → ∞ 2 1 − ( 1 2 ) n = 2 1 − 0 = 2 \lim_{n \rightarrow \infty}2^{\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^n}}=\lim_{n \rightarrow \infty}2^{1 - (\frac{1}{2})^n}=2^{1 - 0}=2 limn221+41++2n1=limn21(21)n=210=2
  2. 利用迫敛性

  • :计算 lim ⁡ n → ∞ ( 1 n 2 + 1 + 1 n 2 + 2 + ⋯ + 1 n 2 + n ) \lim_{n \rightarrow \infty} (\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \cdots + \frac{1}{\sqrt{n^2 + n}}) limn(n2+1 1+n2+2 1++n2+n 1)

    • 因为 n n 2 + n ≤ 1 n 2 + 1 + 1 n 2 + 2 + ⋯ + 1 n 2 + n ≤ n n 2 + 1 \frac{n}{\sqrt{n^2 + n}} \leq \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \cdots + \frac{1}{\sqrt{n^2 + n}} \leq \frac{n}{\sqrt{n^2 + 1}} n2+n nn2+1 1+n2+2 1++n2+n 1n2+1 n
      对于 lim ⁡ n → ∞ n n 2 + n \lim_{n \rightarrow \infty}\frac{n}{\sqrt{n^2 + n}} limnn2+n n,分子分母同时除以 n n n,可得 lim ⁡ n → ∞ 1 1 + 1 n \lim_{n \rightarrow \infty}\frac{1}{\sqrt{1 + \frac{1}{n}}} limn1+n1 1,因为 lim ⁡ n → ∞ 1 n = 0 \lim_{n \rightarrow \infty}\frac{1}{n} = 0 limnn1=0,所以 lim ⁡ n → ∞ n n 2 + n = 1 \lim_{n \rightarrow \infty}\frac{n}{\sqrt{n^2 + n}} = 1 limnn2+n n=1
      对于 lim ⁡ n → ∞ n n 2 + 1 \lim_{n \rightarrow \infty}\frac{n}{\sqrt{n^2 + 1}} limnn2+1 n,同样分子分母同时除以 n n n,得到 lim ⁡ n → ∞ 1 1 + 1 n 2 \lim_{n \rightarrow \infty}\frac{1}{\sqrt{1 + \frac{1}{n^2}}} limn1+n21 1,由于 lim ⁡ n → ∞ 1 n 2 = 0 \lim_{n \rightarrow \infty}\frac{1}{n^2} = 0 limnn21=0,所以 lim ⁡ n → ∞ n n 2 + 1 = 1 \lim_{n \rightarrow \infty}\frac{n}{\sqrt{n^2 + 1}} = 1 limnn2+1 n=1
      由迫敛性可知, lim ⁡ n → ∞ ( 1 n 2 + 1 + 1 n 2 + 2 + ⋯ + 1 n 2 + n ) = 1 \lim_{n \rightarrow \infty}(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \cdots + \frac{1}{\sqrt{n^2 + n}}) = 1 limn(n2+1 1+n2+2 1++n2+n 1)=1

课堂练习

计算下列极限:

  1. lim ⁡ n → ∞ n n + 1 \lim_{n \rightarrow \infty}\frac{\sqrt{n}}{\sqrt{n} + 1} limnn +1n
    • :分子分母同时除以 n \sqrt{n} n ,得到 lim ⁡ n → ∞ 1 1 + 1 n \lim_{n \rightarrow \infty}\frac{1}{1 + \frac{1}{\sqrt{n}}} limn1+n 11。因为 lim ⁡ n → ∞ 1 n = 0 \lim_{n \rightarrow \infty}\frac{1}{\sqrt{n}} = 0 limnn 1=0,所以该极限值为 1 1 + 0 = 1 \frac{1}{1 + 0} = 1 1+01=1
  2. lim ⁡ n → ∞ n + 1 n 2 − 1 \lim_{n \rightarrow \infty}\frac{n + 1}{n^2 - 1} limnn21n+1
    • :对原式进行化简, n + 1 n 2 − 1 = n + 1 ( n + 1 ) ( n − 1 ) = 1 n − 1 \frac{n + 1}{n^2 - 1}=\frac{n + 1}{(n + 1)(n - 1)}=\frac{1}{n - 1} n21n+1=(n+1)(n1)n+1=n11 n e q − 1 n eq - 1 neq1),当 n → ∞ n \rightarrow \infty n时, lim ⁡ n → ∞ 1 n − 1 = 0 \lim_{n \rightarrow \infty}\frac{1}{n - 1} = 0 limnn11=0
  3. lim ⁡ n → ∞ ( 1 + 2 n + 3 n ) 1 n \lim_{n \rightarrow \infty}(1 + 2^n + 3^n)^{\frac{1}{n}} limn(1+2n+3n)n1
    • :因为 3 n < 1 + 2 n + 3 n < 3 × 3 n 3^n\lt1 + 2^n + 3^n\lt3\times3^n 3n<1+2n+3n<3×3n,两边同时开 n n n次方可得 3 < ( 1 + 2 n + 3 n ) 1 n < 3 × 3 1 n 3\lt(1 + 2^n + 3^n)^{\frac{1}{n}}\lt3\times3^{\frac{1}{n}} 3<(1+2n+3n)n1<3×3n1
      对于 lim ⁡ n → ∞ 3 1 n \lim_{n \rightarrow \infty}3^{\frac{1}{n}} limn3n1,令 y = 3 1 n y = 3^{\frac{1}{n}} y=3n1,则 ln ⁡ y = 1 n ln ⁡ 3 \ln y=\frac{1}{n}\ln 3 lny=n1ln3,当 n → ∞ n \rightarrow \infty n时, lim ⁡ n → ∞ 1 n ln ⁡ 3 = 0 \lim_{n \rightarrow \infty}\frac{1}{n}\ln 3 = 0 limnn1ln3=0,根据对数函数的连续性 lim ⁡ n → ∞ y = e 0 = 1 \lim_{n \rightarrow \infty}y = e^0 = 1 limny=e0=1,即 lim ⁡ n → ∞ 3 1 n = 1 \lim_{n \rightarrow \infty}3^{\frac{1}{n}} = 1 limn3n1=1
      由迫敛性可知 lim ⁡ n → ∞ ( 1 + 2 n + 3 n ) 1 n = 3 \lim_{n \rightarrow \infty}(1 + 2^n + 3^n)^{\frac{1}{n}} = 3 limn(1+2n+3n)n1=3
  4. lim ⁡ n → ∞ ( 1 − 1 2 ) ( 1 − 1 3 ) ⋯ ( 1 − 1 n ) \lim_{n \rightarrow \infty}(1 - \frac{1}{2})(1 - \frac{1}{3})\cdots(1 - \frac{1}{n}) limn(121)(131)(1n1)
    • :先化简式子, ( 1 − 1 2 ) ( 1 − 1 3 ) ⋯ ( 1 − 1 n ) = 1 2 × 2 3 × ⋯ × n − 1 n = 1 n (1 - \frac{1}{2})(1 - \frac{1}{3})\cdots(1 - \frac{1}{n})=\frac{1}{2}\times\frac{2}{3}\times\cdots\times\frac{n - 1}{n}=\frac{1}{n} (121)(131)(1n1)=21×32××nn1=n1,当 n → ∞ n \rightarrow \infty n时, lim ⁡ n → ∞ 1 n = 0 \lim_{n \rightarrow \infty}\frac{1}{n} = 0 limnn1=0
  5. lim ⁡ n → ∞ n ( 1 n 2 + 1 + 1 n 2 + 2 + ⋯ + 1 n 2 + n ) \lim_{n \rightarrow \infty}n(\frac{1}{n^2 + 1} + \frac{1}{n^2 + 2} + \cdots + \frac{1}{n^2 + n}) limnn(n2+11+n2+21++n2+n1)
    • :因为 n n 2 + n ≤ n ( 1 n 2 + 1 + 1 n 2 + 2 + ⋯ + 1 n 2 + n ) ≤ n n 2 + 1 \frac{n}{n^2 + n}\leq n(\frac{1}{n^2 + 1} + \frac{1}{n^2 + 2} + \cdots + \frac{1}{n^2 + n})\leq\frac{n}{n^2 + 1} n2+nnn(n2+11+n2+21++n2+n1)n2+1n
      对于 lim ⁡ n → ∞ n n 2 + n \lim_{n \rightarrow \infty}\frac{n}{n^2 + n} limnn2+nn,分子分母同时除以 n 2 n^2 n2,得 lim ⁡ n → ∞ 1 n 1 + 1 n = 0 \lim_{n \rightarrow \infty}\frac{\frac{1}{n}}{1 + \frac{1}{n}} = 0 limn1+n1n1=0
      对于 lim ⁡ n → ∞ n n 2 + 1 \lim_{n \rightarrow \infty}\frac{n}{n^2 + 1} limnn2+1n,分子分母同时除以 n 2 n^2 n2,得 lim ⁡ n → ∞ 1 n 1 + 1 n 2 = 0 \lim_{n \rightarrow \infty}\frac{\frac{1}{n}}{1 + \frac{1}{n^2}} = 0 limn1+n21n1=0
      由迫敛性可得 lim ⁡ n → ∞ n ( 1 n 2 + 1 + 1 n 2 + 2 + ⋯ + 1 n 2 + n ) = 0 \lim_{n \rightarrow \infty}n(\frac{1}{n^2 + 1} + \frac{1}{n^2 + 2} + \cdots + \frac{1}{n^2 + n}) = 0 limnn(n2+11+n2+21++n2+n1)=0

作业

  1. x n = 0.11 ⋯ 1 x_n = 0.11\cdots1 xn=0.111 n n n 1 1 1),求 lim ⁡ n → ∞ x n \lim_{n \rightarrow \infty}x_n limnxn
    • x n = 0.1 + 0.01 + 0.001 + ⋯ + 0. 0 ⋯ 0 ⏟ n − 1 个 0 1 x_n = 0.1 + 0.01 + 0.001 + \cdots + 0. \underbrace{0\cdots0}_{n - 1个0}1 xn=0.1+0.01+0.001++0.n10 001,这是首项 a 1 = 0.1 a_1 = 0.1 a1=0.1,公比 q = 0.1 q = 0.1 q=0.1的等比数列的前 n n n项和。根据等比数列求和公式 S n = a 1 ( 1 − q n ) 1 − q S_n=\frac{a_1(1 - q^n)}{1 - q} Sn=1qa1(1qn),可得 x n = 0.1 × ( 1 − 0. 1 n ) 1 − 0.1 = 1 9 ( 1 − 0. 1 n ) x_n=\frac{0.1\times(1 - 0.1^n)}{1 - 0.1}=\frac{1}{9}(1 - 0.1^n) xn=10.10.1×(10.1n)=91(10.1n)。当 n → ∞ n \rightarrow \infty n时, lim ⁡ n → ∞ 0. 1 n = 0 \lim_{n \rightarrow \infty}0.1^n = 0 limn0.1n=0,所以 lim ⁡ n → ∞ x n = 1 9 ( 1 − 0 ) = 1 9 \lim_{n \rightarrow \infty}x_n=\frac{1}{9}(1 - 0)=\frac{1}{9} limnxn=91(10)=91
  2. 计算下列数列极限:
    • lim ⁡ n → ∞ ( n + 3 − n ) \lim_{n \rightarrow \infty}(\sqrt{n + 3} - \sqrt{n}) limn(n+3 n )
      • :分子有理化, n + 3 − n = ( n + 3 − n ) ( n + 3 + n ) n + 3 + n = 3 n + 3 + n \sqrt{n + 3} - \sqrt{n}=\frac{(\sqrt{n + 3} - \sqrt{n})(\sqrt{n + 3} + \sqrt{n})}{\sqrt{n + 3} + \sqrt{n}}=\frac{3}{\sqrt{n + 3} + \sqrt{n}} n+3 n =n+3 +n (n+3 n )(n+3 +n )=n+3 +n 3。当 n → ∞ n \rightarrow \infty n时, lim ⁡ n → ∞ 3 n + 3 + n = 0 \lim_{n \rightarrow \infty}\frac{3}{\sqrt{n + 3} + \sqrt{n}} = 0 limnn+3 +n 3=0
    • lim ⁡ n → ∞ 3 n + 5 n 2 + n + 4 \lim_{n \rightarrow \infty}\frac{3n + 5}{\sqrt{n^2 + n + 4}} limnn2+n+4 3n+5
      • :分子分母同时除以 n n n,得到 lim ⁡ n → ∞ 3 + 5 n 1 + 1 n + 4 n 2 \lim_{n \rightarrow \infty}\frac{3 + \frac{5}{n}}{\sqrt{1 + \frac{1}{n} + \frac{4}{n^2}}} limn1+n1+n24 3+n5。因为 lim ⁡ n → ∞ 5 n = 0 \lim_{n \rightarrow \infty}\frac{5}{n} = 0 limnn5=0 lim ⁡ n → ∞ 1 n = 0 \lim_{n \rightarrow \infty}\frac{1}{n} = 0 limnn1=0 lim ⁡ n → ∞ 4 n 2 = 0 \lim_{n \rightarrow \infty}\frac{4}{n^2} = 0 limnn24=0,所以极限值为 3 + 0 1 + 0 + 0 = 3 \frac{3 + 0}{\sqrt{1 + 0 + 0}} = 3 1+0+0 3+0=3
    • lim ⁡ n → ∞ ( n + 1 ) ( n + 2 ) ( n + 3 ) 5 n 3 \lim_{n \rightarrow \infty}\frac{(n + 1)(n + 2)(n + 3)}{5n^3} limn5n3(n+1)(n+2)(n+3)
      • :将分子展开 ( n + 1 ) ( n + 2 ) ( n + 3 ) = n 3 + 6 n 2 + 11 n + 6 (n + 1)(n + 2)(n + 3)=n^3 + 6n^2 + 11n + 6 (n+1)(n+2)(n+3)=n3+6n2+11n+6,则原式变为 lim ⁡ n → ∞ n 3 + 6 n 2 + 11 n + 6 5 n 3 \lim_{n \rightarrow \infty}\frac{n^3 + 6n^2 + 11n + 6}{5n^3} limn5n3n3+6n2+11n+6。分子分母同时除以 n 3 n^3 n3,得 lim ⁡ n → ∞ ( 1 5 + 6 5 n + 11 5 n 2 + 6 5 n 3 ) \lim_{n \rightarrow \infty}(\frac{1}{5}+\frac{6}{5n}+\frac{11}{5n^2}+\frac{6}{5n^3}) limn(51+5n6+5n211+5n36)。因为 lim ⁡ n → ∞ 1 n = 0 \lim_{n \rightarrow \infty}\frac{1}{n} = 0 limnn1=0 lim ⁡ n → ∞ 1 n 2 = 0 \lim_{n \rightarrow \infty}\frac{1}{n^2} = 0 limnn21=0 lim ⁡ n → ∞ 1 n 3 = 0 \lim_{n \rightarrow \infty}\frac{1}{n^3} = 0 limnn31=0,所以极限值为 1 5 + 0 + 0 + 0 = 1 5 \frac{1}{5}+0 + 0 + 0=\frac{1}{5} 51+0+0+0=51
    • lim ⁡ n → ∞ 1 + 2 + 3 + ⋯ + ( n − 1 ) n 2 \lim_{n \rightarrow \infty}\frac{1 + 2 + 3 + \cdots + (n - 1)}{n^2} limnn21+2+3++(n1)
      • :由等差数列求和公式 1 + 2 + 3 + ⋯ + ( n − 1 ) = ( n − 1 ) n 2 1 + 2 + 3 + \cdots + (n - 1)=\frac{(n - 1)n}{2} 1+2+3++(n1)=2(n1)n,则原式为 lim ⁡ n → ∞ ( n − 1 ) n 2 n 2 = lim ⁡ n → ∞ n 2 − n 2 n 2 \lim_{n \rightarrow \infty}\frac{\frac{(n - 1)n}{2}}{n^2}=\lim_{n \rightarrow \infty}\frac{n^2 - n}{2n^2} limnn22(n1)n=limn2n2n2n。分子分母同时除以 n 2 n^2 n2,得 lim ⁡ n → ∞ ( 1 2 − 1 2 n ) = 1 2 − 0 = 1 2 \lim_{n \rightarrow \infty}(\frac{1}{2}-\frac{1}{2n})=\frac{1}{2}-0=\frac{1}{2} limn(212n1)=210=21
    • lim ⁡ n → ∞ ( 1 n 2 + n + 1 + 2 n 2 + n + 2 + ⋯ + n n 2 + n + n ) \lim_{n \rightarrow \infty}(\frac{1}{n^2 + n + 1} + \frac{2}{n^2 + n + 2} + \cdots + \frac{n}{n^2 + n + n}) limn(n2+n+11+n2+n+22++n2+n+nn)
      • :因为 1 + 2 + ⋯ + n n 2 + n + n ≤ 1 n 2 + n + 1 + 2 n 2 + n + 2 + ⋯ + n n 2 + n + n ≤ 1 + 2 + ⋯ + n n 2 + n + 1 \frac{1 + 2 + \cdots + n}{n^2 + n + n} \leq \frac{1}{n^2 + n + 1} + \frac{2}{n^2 + n + 2} + \cdots + \frac{n}{n^2 + n + n} \leq \frac{1 + 2 + \cdots + n}{n^2 + n + 1} n2+n+n1+2++nn2+n+11+n2+n+22++n2+n+nnn2+n+11+2++n
        由等差数列求和公式可知 1 + 2 + ⋯ + n = n ( n + 1 ) 2 1 + 2 + \cdots + n = \frac{n(n + 1)}{2} 1+2++n=2n(n+1)
        对于 lim ⁡ n → ∞ n ( n + 1 ) 2 n 2 + n + n \lim_{n \to \infty}\frac{\frac{n(n + 1)}{2}}{n^2 + n + n} limnn2+n+n2n(n+1),分子分母同时除以 n 2 n^2 n2
        lim ⁡ n → ∞ n ( n + 1 ) 2 n 2 + 2 n = lim ⁡ n → ∞ 1 2 ( 1 + 1 n ) 1 + 2 n = 1 2 ( 1 + 0 ) 1 + 0 = 1 2 \begin{align*} \lim_{n \to \infty}\frac{\frac{n(n + 1)}{2}}{n^2 + 2n}&=\lim_{n \to \infty}\frac{\frac{1}{2}(1 + \frac{1}{n})}{1 + \frac{2}{n}}\\ &=\frac{\frac{1}{2}(1 + 0)}{1 + 0}\\ &=\frac{1}{2} \end{align*} nlimn2+2n2n(n+1)=nlim1+n221(1+n1)=1+021(1+0)=21
        对于 lim ⁡ n → ∞ n ( n + 1 ) 2 n 2 + n + 1 \lim_{n \to \infty}\frac{\frac{n(n + 1)}{2}}{n^2 + n + 1} limnn2+n+12n(n+1),分子分母同时除以 n 2 n^2 n2
        lim ⁡ n → ∞ n ( n + 1 ) 2 n 2 + n + 1 = lim ⁡ n → ∞ 1 2 ( 1 + 1 n ) 1 + 1 n + 1 n 2 = 1 2 ( 1 + 0 ) 1 + 0 + 0 = 1 2 \begin{align*} \lim_{n \to \infty}\frac{\frac{n(n + 1)}{2}}{n^2 + n + 1}&=\lim_{n \to \infty}\frac{\frac{1}{2}(1 + \frac{1}{n})}{1 + \frac{1}{n}+\frac{1}{n^2}}\\ &=\frac{\frac{1}{2}(1 + 0)}{1 + 0 + 0}\\ &=\frac{1}{2} \end{align*} nlimn2+n+12n(n+1)=nlim1+n1+n2121(1+n1)=1+0+021(1+0)=21
        由迫敛性可知 lim ⁡ n → ∞ ( 1 n 2 + n + 1 + 2 n 2 + n + 2 + ⋯ + n n 2 + n + n ) = 1 2 \lim_{n \to \infty}(\frac{1}{n^2 + n + 1} + \frac{2}{n^2 + n + 2} + \cdots + \frac{n}{n^2 + n + n})=\frac{1}{2} limn(n2+n+11+n2+n+22++n2+n+nn)=21
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值