李永乐复习全书高等数学 第一章 函数、极限、连续

1.2  极限

例4  设 f ( x ) f(x) f(x) x = 0 x=0 x=0的某邻域内连续, f ( 0 ) ≠ 0 f(0)\ne0 f(0)=0,则 lim ⁡ x → 0 ∫ 0 x ( x − t ) f ( t ) d t x ∫ 0 x f ( x − t ) d t = \lim\limits_{x\to0}\cfrac{\displaystyle\int^x_0(x-t)f(t)\mathrm{d}t}{x\displaystyle\int^x_0f(x-t)\mathrm{d}t}= x0limx0xf(xt)dt0x(xt)f(t)dt=______。


∫ 0 x ( x − t ) f ( t ) d t = x ∫ 0 x f ( t ) d t − ∫ 0 x t f ( t ) d t , ∫ 0 x f ( x − t ) d t = ∫ x 0 f ( u ) ( − d u ) = ∫ 0 x f ( u ) d u = ∫ 0 x f ( t ) d t , 原式 = lim ⁡ x → 0 x ∫ 0 x f ( t ) d t − ∫ 0 x t f ( t ) d t x ∫ 0 x f ( t ) d t = lim ⁡ x → 0 ∫ 0 x f ( t ) d t + x f ( x ) − x f ( x ) ∫ 0 x f ( t ) d t + x f ( x ) = lim ⁡ x → 0 ∫ 0 x f ( t ) d t ∫ 0 x f ( t ) d t + x f ( x ) . \begin{aligned} &\displaystyle\int^x_0(x-t)f(t)\mathrm{d}t=x\displaystyle\int^x_0f(t)\mathrm{d}t-\displaystyle\int^x_0tf(t)\mathrm{d}t,\\ &\displaystyle\int^x_0f(x-t)\mathrm{d}t=\displaystyle\int^0_xf(u)(-\mathrm{d}u)=\displaystyle\int^x_0f(u)\mathrm{d}u=\displaystyle\int^x_0f(t)\mathrm{d}t, \end{aligned}\\ \begin{aligned} \text{原式}&=\lim\limits_{x\to0}\cfrac{x\displaystyle\int^x_0f(t)\mathrm{d}t-\displaystyle\int^x_0tf(t)\mathrm{d}t}{x\displaystyle\int^x_0f(t)\mathrm{d}t}=\lim\limits_{x\to0}\cfrac{\displaystyle\int^x_0f(t)\mathrm{d}t+xf(x)-xf(x)}{\displaystyle\int^x_0f(t)\mathrm{d}t+xf(x)}\\ &=\lim\limits_{x\to0}\cfrac{\displaystyle\int^x_0f(t)\mathrm{d}t}{\displaystyle\int^x_0f(t)\mathrm{d}t+xf(x)}. \end{aligned} 0x(xt)f(t)dt=x0xf(t)dt0xtf(t)dt,0xf(xt)dt=x0f(u)(du)=0xf(u)du=0xf(t)dt,原式=x0limx0xf(t)dtx0xf(t)dt0xtf(t)dt=x0lim0xf(t)dt+xf(x)0xf(t)dt+xf(x)xf(x)=x0lim0xf(t)dt+xf(x)0xf(t)dt.
  此式不能用洛必达法则,因为 f ( x ) f(x) f(x) x = 0 x=0 x=0的去心领域内未设可导,不满足洛必达法则的条件(2)。应将上式右边分子、分母统一除以 x x x,得
原式 = lim ⁡ x → 0 1 x ∫ 0 x f ( t ) d t 1 x ∫ 0 x f ( t ) d t + f ( x ) . \text{原式}=\lim\limits_{x\to0}\cfrac{\cfrac{1}{x}\displaystyle\int^x_0f(t)\mathrm{d}t}{\cfrac{1}{x}\displaystyle\int^x_0f(t)\mathrm{d}t+f(x)}. 原式=x0limx10xf(t)dt+f(x)x10xf(t)dt.
  由洛必达法则, lim ⁡ x → 0 ∫ 0 x f ( t ) d t x = lim ⁡ x → 0 f ( x ) 1 = f ( 0 ) \lim\limits_{x\to0}\cfrac{\displaystyle\int^x_0f(t)\mathrm{d}t}{x}=\lim\limits_{x\to0}\cfrac{f(x)}{1}=f(0) x0limx0xf(t)dt=x0lim1f(x)=f(0)。从而
原式 = f ( 0 ) f ( 0 ) + f ( 0 ) = 1 2 . \text{原式}=\cfrac{f(0)}{f(0)+f(0)}=\cfrac{1}{2}. 原式=f(0)+f(0)f(0)=21.
这道题主要利用了构造函数求解

例5   lim ⁡ x → 0 3 sin ⁡ x + x 2 cos ⁡ 1 x ( 1 + cos ⁡ x ) ln ⁡ ( 1 + x ) = \lim\limits_{x\to0}\cfrac{3\sin x+x^2\cos\cfrac{1}{x}}{(1+\cos x)\ln(1+x)}= x0lim(1+cosx)ln(1+x)3sinx+x2cosx1=______。


lim ⁡ x → 0 3 sin ⁡ x + x 2 cos ⁡ 1 x ( 1 + cos ⁡ x ) ln ⁡ ( 1 + x ) = 1 2 lim ⁡ x → 0 3 sin ⁡ x + x 2 cos ⁡ 1 x x = 1 2 [ lim ⁡ x → 0 3 sin ⁡ x x + lim ⁡ x → 0 ( x cos ⁡ 1 x ) ] = 3 2 . \begin{aligned} \lim\limits_{x\to0}\cfrac{3\sin x+x^2\cos\cfrac{1}{x}}{(1+\cos x)\ln(1+x)}&=\cfrac{1}{2}\lim\limits_{x\to0}\cfrac{3\sin x+x^2\cos\cfrac{1}{x}}{x}\\ &=\cfrac{1}{2}\left[\lim\limits_{x\to0}\cfrac{3\sin x}{x}+\lim\limits_{x\to0}\left(x\cos\cfrac{1}{x}\right)\right]=\cfrac{3}{2}. \end{aligned} x0lim(1+cosx)ln(1+x)3sinx+x2cosx1=21x0limx3sinx+x2cosx1=21[x0limx3sinx+x0lim(xcosx1)]=23.
这道题主要利用了洛必达法则求极限的条件求解

例6  求极限 lim ⁡ x → + ∞ ∫ 1 x [ t 2 ( e 1 t − 1 ) − t ] d t x 2 ln ⁡ ( 1 + 1 x ) \lim\limits_{x\to+\infty}\cfrac{\displaystyle\int^x_1[t^2(e^{\frac{1}{t}}-1)-t]\mathrm{d}t}{x^2\ln\left(1+\cfrac{1}{x}\right)} x+limx2ln(1+x1)1x[t2(et11)t]dt

  命分母为 g ( x ) = x 2 ln ⁡ ( 1 + 1 x ) = x ⋅ x ln ⁡ ( 1 + 1 x ) g(x)=x^2\ln\left(1+\cfrac{1}{x}\right)=x\cdot x\ln\left(1+\cfrac{1}{x}\right) g(x)=x2ln(1+x1)=xxln(1+x1),由于 lim ⁡ x → + ∞ x ln ⁡ ( 1 + 1 x ) = lim ⁡ u → 0 + ln ⁡ ( 1 + u ) u = 1 \lim\limits_{x\to+\infty}x\ln\left(1+\cfrac{1}{x}\right)=\lim\limits_{u\to0^+}\cfrac{\ln(1+u)}{u}=1 x+limxln(1+x1)=u0+limuln(1+u)=1,所以 lim ⁡ x → + ∞ g ( x ) = lim ⁡ x → + ∞ x = + ∞ \lim\limits_{x\to+\infty}g(x)=\lim\limits_{x\to+\infty}x=+\infty x+limg(x)=x+limx=+
  命分子为 f ( x ) = ∫ 1 x [ t 2 ( e 1 t − 1 ) − t ] d t f(x)=\displaystyle\int^x_1[t^2(e^{\frac{1}{t}}-1)-t]\mathrm{d}t f(x)=1x[t2(et11)t]dt,其中被积函数的极限
lim ⁡ x → + ∞ [ t 2 ( e 1 t − 1 ) − t ] = lim ⁡ u → 0 + e u − 1 − u u 2 = 洛必达 lim ⁡ u → 0 + e u − 1 2 u = 洛必达 lim ⁡ u → 0 + e u 2 = 1 2 , \begin{aligned} \lim\limits_{x\to+\infty}[t^2(e^{\frac{1}{t}}-1)-t]&=\lim\limits_{u\to0^+}\cfrac{e^u-1-u}{u^2}\\ &\xlongequal{\text{洛必达}}\lim\limits_{u\to0^+}\cfrac{e^u-1}{2u}\\ &\xlongequal{\text{洛必达}}\lim\limits_{u\to0^+}\cfrac{e^u}{2}=\cfrac{1}{2}, \end{aligned} x+lim[t2(et11)t]=u0+limu2eu1u洛必达 u0+lim2ueu1洛必达 u0+lim2eu=21,
  所以存在充分大的 T T T,由保号性,当 t > T t>T t>T时,有
[ t 2 ( e 1 t − 1 ) − t ] > 1 3 . [t^2(e^{\frac{1}{t}}-1)-t]>\cfrac{1}{3}. [t2(et11)t]>31.
  于是当 x x x充分大 ( x > T ) (x>T) (x>T)时,
f ( x ) = ∫ 1 x [ t 2 ( e 1 t − 1 ) − t ] d t = ∫ 1 T [ t 2 ( e 1 t − 1 ) − t ] d t + ∫ T x [ t 2 ( e 1 t − 1 ) − t ] d t > ∫ 1 T [ t 2 ( e 1 t − 1 ) − t ] d t + ∫ T x 1 3 d t = ∫ T x [ t 2 ( e 1 t − 1 ) − t ] d t + 1 3 ( x − T ) → x → + ∞ + ∞ . \begin{aligned} f(x)&=\displaystyle\int^x_1[t^2(e^{\frac{1}{t}}-1)-t]\mathrm{d}t\\ &=\displaystyle\int^T_1[t^2(e^{\frac{1}{t}}-1)-t]\mathrm{d}t+\displaystyle\int^x_T[t^2(e^{\frac{1}{t}}-1)-t]\mathrm{d}t\\ &>\displaystyle\int^T_1[t^2(e^{\frac{1}{t}}-1)-t]\mathrm{d}t+\displaystyle\int^x_T\cfrac{1}{3}\mathrm{d}t\\ &=\displaystyle\int^x_T[t^2(e^{\frac{1}{t}}-1)-t]\mathrm{d}t+\cfrac{1}{3}(x-T)\xrightarrow[x\to+\infty]{}+\infty. \end{aligned} f(x)=1x[t2(et11)t]dt=1T[t2(et11)t]dt+Tx[t2(et11)t]dt>1T[t2(et11)t]dt+Tx31dt=Tx[t2(et11)t]dt+31(xT) x++.
  由洛必达法则
lim ⁡ x → + ∞ ∫ 1 x [ t 2 ( e 1 t − 1 ) − t ] d t x 2 ln ⁡ ( 1 + 1 x ) = lim ⁡ x → + ∞ ∫ 1 x [ t 2 ( e 1 t − 1 ) − t ] d t x = 洛必达 lim ⁡ x → + ∞ x 2 ( e 1 x − 1 ) − x 1 = 1 2 . \begin{aligned} \lim\limits_{x\to+\infty}\cfrac{\displaystyle\int^x_1[t^2(e^{\frac{1}{t}}-1)-t]\mathrm{d}t}{x^2\ln\left(1+\cfrac{1}{x}\right)}&=\lim\limits_{x\to+\infty}\cfrac{\displaystyle\int^x_1[t^2(e^{\frac{1}{t}}-1)-t]\mathrm{d}t}{x}\\ &\xlongequal{\text{洛必达}}\lim\limits_{x\to+\infty}\cfrac{x^2(e^{\frac{1}{x}}-1)-x}{1}=\cfrac{1}{2}. \end{aligned} x+limx2ln(1+x1)1x[t2(et11)t]dt=x+limx1x[t2(et11)t]dt洛必达 x+lim1x2(ex11)x=21.
这道题主要利用了积分式求导求解

例17  设 lim ⁡ x → 0 x f ( x ) + ln ⁡ ( 1 − 2 x ) x 2 = 4 \lim\limits_{x\to0}\cfrac{xf(x)+\ln(1-2x)}{x^2}=4 x0limx2xf(x)+ln(12x)=4,则 lim ⁡ x → 0 f ( x ) − 2 x = \lim\limits_{x\to0}\cfrac{f(x)-2}{x}= x0limxf(x)2=______。


f ( x ) − 2 x − x f ( x ) + ln ⁡ ( 1 − 2 x ) x 2 = − 2 x − ln ⁡ ( 1 − 2 x ) x 2 . lim ⁡ x → 0 f ( x ) − 2 x = lim ⁡ x → 0 x f ( x ) + ln ⁡ ( 1 − 2 x ) x 2 − lim ⁡ x → 0 2 x + ln ⁡ ( 1 − 2 x ) x 2 = 4 − lim ⁡ x → 0 2 − 2 1 − 2 x 2 x = 6. \cfrac{f(x)-2}{x}-\cfrac{xf(x)+\ln(1-2x)}{x^2}=\cfrac{-2x-\ln(1-2x)}{x^2}.\\ \begin{aligned} \lim\limits_{x\to0}\cfrac{f(x)-2}{x}&=\lim\limits_{x\to0}\cfrac{xf(x)+\ln(1-2x)}{x^2}-\lim\limits_{x\to0}\cfrac{2x+\ln(1-2x)}{x^2}\\ &=4-\lim\limits_{x\to0}\cfrac{2-\cfrac{2}{1-2x}}{2x}=6. \end{aligned} xf(x)2x2xf(x)+ln(12x)=x22xln(12x).x0limxf(x)2=x0limx2xf(x)+ln(12x)x0limx22x+ln(12x)=4x0lim2x212x2=6.
这道题主要利用了极限的四则运算求解

例21  设 u n = ∑ i = 1 n 1 ( n + i − 1 ) ( n + i ) u_n=\sum\limits_{i=1}^n\cfrac{1}{\sqrt{(n+i-1)(n+i)}} un=i=1n(n+i1)(n+i) 1,求 lim ⁡ n → ∞ u n \lim\limits_{n\to\infty}u_n nlimun


u n = ∑ i = 1 n 1 ( n + i − 1 ) ( n + i ) = 1 n ∑ i = 1 n 1 ( 1 + i − 1 n ) ( 1 + i n ) ⩽ 1 n ∑ i = 1 n 1 1 + i − 1 n = 1 n ∑ i = 0 n − 1 1 1 + i n → n → ∞ ∫ 0 1 1 1 + x d x = ln ⁡ 2. u n ⩾ ∑ i = 1 n 1 n + i = 1 n ∑ i = 1 n 1 1 + i n → n → ∞ ∫ 0 1 1 1 + x d x = ln ⁡ 2. \begin{aligned} u_n&=\sum\limits_{i=1}^n\cfrac{1}{\sqrt{(n+i-1)(n+i)}}=\cfrac{1}{n}\sum\limits_{i=1}^n\cfrac{1}{\sqrt{(1+\cfrac{i-1}{n})(1+\cfrac{i}{n})}}\\ &\leqslant\cfrac{1}{n}\sum\limits_{i=1}^n\cfrac{1}{1+\cfrac{i-1}{n}}=\cfrac{1}{n}\sum\limits_{i=0}^{n-1}\cfrac{1}{1+\cfrac{i}{n}}\xrightarrow[n\to\infty]{}\displaystyle\int^1_0\cfrac{1}{1+x}\mathrm{d}x=\ln2. \end{aligned}\\ \begin{aligned} u_n&\geqslant\sum\limits_{i=1}^n\cfrac{1}{n+i}\\ &=\cfrac{1}{n}\sum\limits_{i=1}^n\cfrac{1}{1+\cfrac{i}{n}}\xrightarrow[n\to\infty]{}\displaystyle\int^1_0\cfrac{1}{1+x}\mathrm{d}x=\ln2. \end{aligned} un=i=1n(n+i1)(n+i) 1=n1i=1n(1+ni1)(1+ni) 1n1i=1n1+ni11=n1i=0n11+ni1 n011+x1dx=ln2.uni=1nn+i1=n1i=1n1+ni1 n011+x1dx=ln2.
  所以, lim ⁡ n → ∞ u n = ln ⁡ 2 \lim\limits_{n\to\infty}u_n=\ln2 nlimun=ln2。(这道题主要利用了积分定义求解

例22  设 u 1 > 0 , u n + 1 = 3 + 4 u n , n = 1 , 2 , ⋯ u_1>0,u_{n+1}=3+\cfrac{4}{u_n},n=1,2,\cdots u1>0,un+1=3+un4,n=1,2,。讨论数列 { u n } \{u_n\} {un}的收敛性。若收敛,并求其极限。


u n + 1 − 4 = 3 + 4 u n − 4 = 4 u n − 1 = 4 − u n u n . u_{n+1}-4=3+\cfrac{4}{u_n}-4=\cfrac{4}{u_n}-1=\cfrac{4-u_n}{u_n}. un+14=3+un44=un41=un4un.
  由于对一切 n , u n > 3 n,u_n>3 n,un>3,所以
∣ u n + 1 − 4 ∣ = ∣ 4 − u n ∣ u n ⩽ 1 3 ∣ u n − 4 ∣ ⩽ ⋯ ⩽ ( 1 3 ) n ∣ u 1 − 4 ∣ . \begin{aligned} |u_{n+1}-4|&=\cfrac{|4-u_n|}{u_n}\leqslant\cfrac{1}{3}|u_n-4|\\ &\leqslant\cdots\leqslant\left(\cfrac{1}{3}\right)^n|u_1-4|. \end{aligned} un+14=un4un31un4(31)nu14.
  不等式左边显然 ⩾ 0 \geqslant0 0,命 n → ∞ n\to\infty n,由夹挤定理得 lim ⁡ n → ∞ ∣ u n + 1 − 4 ∣ = 0 \lim\limits_{n\to\infty}|u_{n+1}-4|=0 nlimun+14=0,所以 lim ⁡ n → ∞ u n = 4 \lim\limits_{n\to\infty}u_n=4 nlimun=4。(这道题主要利用了放缩法求解

例25  下列命题正确的是(  )
( A ) (A) (A) lim ⁡ x → x 0 f ( x ) \lim\limits_{x\to x_0}f(x) xx0limf(x)不存在, lim ⁡ x → x 0 g ( x ) \lim\limits_{x\to x_0}g(x) xx0limg(x)存在,则 lim ⁡ x → x 0 ( f ( x ) g ( x ) ) \lim\limits_{x\to x_0}(f(x)g(x)) xx0lim(f(x)g(x))必存在;
( B ) (B) (B) lim ⁡ x → x 0 f ( x ) \lim\limits_{x\to x_0}f(x) xx0limf(x)不存在, lim ⁡ x → x 0 g ( x ) \lim\limits_{x\to x_0}g(x) xx0limg(x)不存在,则 lim ⁡ x → x 0 ( f ( x ) g ( x ) ) \lim\limits_{x\to x_0}(f(x)g(x)) xx0lim(f(x)g(x))必不存在;
( C ) (C) (C) lim ⁡ x → x 0 g ( x ) = u 0 , lim ⁡ u → u 0 f ( u ) = A \lim\limits_{x\to x_0}g(x)=u_0,\lim\limits_{u\to u_0}f(u)=A xx0limg(x)=u0,uu0limf(u)=A,则必有 lim ⁡ x → x 0 f ( g ( x ) ) = A \lim\limits_{x\to x_0}f(g(x))=A xx0limf(g(x))=A
( D ) (D) (D) lim ⁡ x → x 0 g ( x ) = ∞ , lim ⁡ u → ∞ f ( u ) = A \lim\limits_{x\to x_0}g(x)=\infty,\lim\limits_{u\to\infty}f(u)=A xx0limg(x)=,ulimf(u)=A,则必有 lim ⁡ x → x 0 f ( g ( x ) ) = A \lim\limits_{x\to x_0}f(g(x))=A xx0limf(g(x))=A

  由 lim ⁡ u → ∞ f ( u ) = A \lim\limits_{u\to\infty}f(u)=A ulimf(u)=A,对于任给 ϵ > 0 \epsilon>0 ϵ>0,存在 M > 0 M>0 M>0,当 ∣ u ∣ > M |u|>M u>M时,有 ∣ f ( u ) − A ∣ < ϵ |f(u)-A|<\epsilon f(u)A<ϵ。又因 lim ⁡ x → x 0 g ( x ) = ∞ \lim\limits_{x\to x_0}g(x)=\infty xx0limg(x)=,故对于上述 M > 0 M>0 M>0,存在 δ > 0 \delta>0 δ>0,当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ时, ∣ g ( x ) ∣ > M |g(x)|>M g(x)>M。将上述两点结合起来推知,对于任给 ϵ > 0 \epsilon>0 ϵ>0,存在 δ > 0 \delta>0 δ>0,当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ时,有 ∣ f ( g ( x ) ) − A ∣ < ϵ |f(g(x))-A|<\epsilon f(g(x))A<ϵ,即
lim ⁡ x → x 0 f ( g ( x ) ) = A . \lim\limits_{x\to x_0}f(g(x))=A. xx0limf(g(x))=A.
  所以 ( D ) (D) (D)正确。
   ( A ) (A) (A)的反例: f ( x ) = 1 x 2 , lim ⁡ x → 0 f ( x ) f(x)=\cfrac{1}{x^2},\lim\limits_{x\to0}f(x) f(x)=x21,x0limf(x)不存在, g ( x ) = x , lim ⁡ x → 0 g ( x ) g(x)=x,\lim\limits_{x\to0}g(x) g(x)=x,x0limg(x)存在,但 lim ⁡ x → 0 ( f ( x ) g ( x ) ) = lim ⁡ x → 0 1 x \lim\limits_{x\to0}(f(x)g(x))=\lim\limits_{x\to0}\cfrac{1}{x} x0lim(f(x)g(x))=x0limx1仍不存在。
   ( B ) (B) (B)的反例: f ( x ) = x ∣ x ∣ ( x ≠ 0 ) , lim ⁡ x → 0 f ( x ) f(x)=\cfrac{x}{|x|}(x\ne0),\lim\limits_{x\to0}f(x) f(x)=xx(x=0),x0limf(x)不存在, g ( x ) = x ∣ x ∣ ( x ≠ 0 ) , lim ⁡ x → 0 g ( x ) g(x)=\cfrac{x}{|x|}(x\ne0),\lim\limits_{x\to0}g(x) g(x)=xx(x=0),x0limg(x)亦不存在,但 lim ⁡ x → 0 ( f ( x ) g ( x ) ) = lim ⁡ x → 0 = lim ⁡ x → 0 x 2 ∣ x 2 ∣ = 1 \lim\limits_{x\to0}(f(x)g(x))=\lim\limits_{x\to0}=\lim\limits_{x\to0}\cfrac{x^2}{|x^2|}=1 x0lim(f(x)g(x))=x0lim=x0limx2x2=1
   ( C ) (C) (C)的反例: g ( x ) = x sin ⁡ 1 x , lim ⁡ x → 0 g ( x ) = 0. f ( u ) = sin ⁡ u u = 1 g(x)=x\sin\cfrac{1}{x},\lim\limits_{x\to0}g(x)=0.f(u)=\cfrac{\sin u}{u}=1 g(x)=xsinx1,x0limg(x)=0.f(u)=usinu=1,但对于复合函数 f ( g ( x ) ) = sin ⁡ ( x sin ⁡ 1 x ) x sin ⁡ 1 x f(g(x))=\cfrac{\sin\left(x\sin\cfrac{1}{x}\right)}{x\sin\cfrac{1}{x}} f(g(x))=xsinx1sin(xsinx1),不论 δ > 0 \delta>0 δ>0多么小,在 x = 0 x=0 x=0 δ \delta δ去心领域 U δ ( 0 ) = { x ∣ 0 < ∣ x ∣ < δ } U_\delta(0)=\{x|0<|x|<\delta\} Uδ(0)={x0<x<δ}内, f ( g ( x ) ) f(g(x)) f(g(x))在无穷多个点上(例如 x = 1 n π , n ∈ Z x=\cfrac{1}{n\pi},n\in\bold{Z} x=nπ1,nZ且充分大)没有定义(因为分母为 0 0 0),因此谈不上取极限 lim ⁡ x → x 0 f ( g ( x ) ) \lim\limits_{x\to x_0}f(g(x)) xx0limf(g(x))。故 ( C ) (C) (C)不成立。(这道题主要利用了临界点求解

例26  设函数 f ( x ) f(x) f(x) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)内单调有界, { x n } \{x_n\} {xn}为数列,下列命题正确的是(  )
( A ) (A) (A) { x n } \{x_n\} {xn}收敛,则 { f ( x n ) } \{f(x_n)\} {f(xn)}收敛;
( B ) (B) (B) { x n } \{x_n\} {xn}单调,则 { f ( x n ) } \{f(x_n)\} {f(xn)}收敛;
( C ) (C) (C) { f ( x n ) } \{f(x_n)\} {f(xn)}收敛,则 { x n } \{x_n\} {xn}收敛;
( D ) (D) (D) { f ( x n ) } \{f(x_n)\} {f(xn)}单调,则 { x n } \{x_n\} {xn}收敛。

  因为 { x n } \{x_n\} {xn}单调, f ( x ) f(x) f(x) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)内也单调,所以复合函数构成的数列 { f ( x n ) } \{f(x_n)\} {f(xn)} n n n来说也是单调的。又因 f ( x ) f(x) f(x)有界,所以 { f ( x n ) } \{f(x_n)\} {f(xn)}有界。由单调有界数列必存在极限,所以 lim ⁡ n → ∞ { f ( x n ) } \lim\limits_{n\to\infty}\{f(x_n)\} nlim{f(xn)}存在,即 { f ( x n ) } \{f(x_n)\} {f(xn)}收敛。选 ( B ) (B) (B)
   ( A ) (A) (A)的反例。设
f ( x ) = { arctan ⁡ x , 0 ⩽ x < + ∞ , arctan ⁡ x − 1 , − ∞ < x < 0. x n = ( − 1 ) n n , n = 1 , 2 , ⋯   . f(x)=\begin{cases}\arctan x,&0\leqslant x<+\infty,\\\arctan x-1,&-\infty<x<0.\end{cases}\\ x_n=\cfrac{(-1)^n}{n},\qquad n=1,2,\cdots. f(x)={arctanx,arctanx1,0x<+,<x<0.xn=n(1)n,n=1,2,.
   f ( x ) f(x) f(x) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)内单调有界, lim ⁡ n → ∞ x n = 0 , { x n } \lim\limits_{n\to\infty}x_n=0,\{x_n\} nlimxn=0,{xn}收敛。
  但
f ( x n ) = { arctan ⁡ ( 1 x ) , n 为偶数 , arctan ⁡ ( − 1 x ) − 1 , n 为奇数 . f(x_n)=\begin{cases}\arctan\left(\cfrac{1}{x}\right),&n\text{为偶数},\\\arctan\left(-\cfrac{1}{x}\right)-1,&n\text{为奇数}.\end{cases} f(xn)=arctan(x1),arctan(x1)1,n为偶数,n为奇数.
  故 lim ⁡ n → ∞ { f ( x n ) } \lim\limits_{n\to\infty}\{f(x_n)\} nlim{f(xn)}不存在。
  由 ( A ) (A) (A)的反例可见,由 { x n } \{x_n\} {xn}的收敛性与 f ( x ) f(x) f(x)的单调性推不出 f ( x ) f(x) f(x)关于 n n n的单调性。所以实际上,条件中的单调性在此已不起作用。
   ( C ) (C) (C)的反例。 f ( x ) = arctan ⁡ x f(x)=\arctan x f(x)=arctanx,它在 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)内单调有界, x n = n , f ( x n ) = arctan ⁡ n → π 2 ( n → ∞ ) x_n=n,f(x_n)=\arctan n\to\cfrac{\pi}{2}(n\to\infty) xn=n,f(xn)=arctann2π(n),它收敛。但 lim ⁡ n → ∞ x n = lim ⁡ n → ∞ n = + ∞ \lim\limits_{n\to\infty}x_n=\lim\limits_{n\to\infty}n=+\infty nlimxn=nlimn=+,不收敛。
   ( D ) (D) (D)的反例见 ( C ) (C) (C)的反例, f ( x n ) = f ( n ) = arctan ⁡ n f(x_n)=f(n)=\arctan n f(xn)=f(n)=arctann单调,但 lim ⁡ n → ∞ x n = lim ⁡ n → ∞ n = + ∞ \lim\limits_{n\to\infty}x_n=\lim\limits_{n\to\infty}n=+\infty nlimxn=nlimn=+,不收敛。(这道题主要利用了函数的单调和有界性质求解

练习一

10.设当 0 < x ⩽ 1 0<x\leqslant1 0<x1 f ( x ) = x sin ⁡ x f(x)=x^{\sin x} f(x)=xsinx,对于其他 x , f ( x ) x,f(x) x,f(x)满足 f ( x ) + k = 2 f ( x + 1 ) f(x)+k=2f(x+1) f(x)+k=2f(x+1)。求常数 k k k使 f ( x ) f(x) f(x) x = 0 x=0 x=0处连续。

  因为 0 < x ⩽ 1 0<x\leqslant1 0<x1时, f ( x ) = x sin ⁡ x f(x)=x^{\sin x} f(x)=xsinx,所以 f ( 1 ) = 1 f(1)=1 f(1)=1,又因为题设 f ( x ) f(x) f(x) x = 0 x=0 x=0处连续,于是
f ( 0 ) = lim ⁡ x → 0 + f ( x ) = lim ⁡ x → 0 + x sin ⁡ x = lim ⁡ x → 0 + e sin ⁡ x ⋅ ln ⁡ x . f(0)=\lim\limits_{x\to0^+}f(x)=\lim\limits_{x\to0^+}x^{\sin x}=\lim\limits_{x\to0^+}e^{\sin x\cdot\ln x}. f(0)=x0+limf(x)=x0+limxsinx=x0+limesinxlnx.
  而 lim ⁡ x → 0 + sin ⁡ x ⋅ ln ⁡ x = lim ⁡ x → 0 + x ⋅ ln ⁡ x = lim ⁡ x → 0 + ln ⁡ x 1 x = lim ⁡ x → 0 + 1 x − 1 x 2 = 0 \lim\limits_{x\to0^+}\sin x\cdot\ln x=\lim\limits_{x\to0^+}x\cdot\ln x=\lim\limits_{x\to0^+}\cfrac{\ln x}{\cfrac{1}{x}}=\lim\limits_{x\to0^+}\cfrac{\cfrac{1}{x}}{-\cfrac{1}{x^2}}=0 x0+limsinxlnx=x0+limxlnx=x0+limx1lnx=x0+limx21x1=0,从而知 f ( 0 ) = e 0 = 1 f(0)=e^0=1 f(0)=e0=1。取 x = 0 x=0 x=0代入 f ( x ) + k = 2 f ( x + 1 ) f(x)+k=2f(x+1) f(x)+k=2f(x+1),得 f ( 0 ) + k = 2 f ( 1 ) f(0)+k=2f(1) f(0)+k=2f(1),即 1 + k = 2 1+k=2 1+k=2,所以 k = 1 k=1 k=1。(这道题主要利用了洛必达法则求解

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值