§5.3 定积分的计算方法
定积分的计算是利用牛顿–莱布尼兹公式
∫
a
b
f
(
x
)
d
x
=
F
(
x
)
∣
a
b
=
F
(
b
)
−
F
(
a
)
\int_a^b f(x) d x=\left.F(x)\right|_a^b=F(b)-F(a)
∫abf(x)dx=F(x)∣ab=F(b)−F(a)
即先计算出一个原函数
F
(
x
)
F(x)
F(x),再计算函数差值
F
(
b
)
−
F
(
a
)
F(b)-F(a)
F(b)−F(a)。如何计算原函数
F
(
x
)
F(x)
F(x) 呢?不定积分就是计算原函数
F
(
x
)
F(x)
F(x) 的方法,根据不定积分的计算方法,下面我们给出具体的定积分的计算方法。
1. 直接法
定积分的直接法类似不定积分的直接法,即通过将被积函数适当变形,然后利用不定积分基本公式求出一个原函数 F ( x ) F(x) F(x),再用牛顿–莱布尼兹公式求出定积分的值。
例1
计算下列定积分
( 1 ) ∫ − 1 1 ( x 3 − 3 x 2 ) d x ( 2 ) ∫ − 2 3 ( x − 1 ) 3 d x ( 3 ) ∫ 0 2 π ∣ sin x ∣ d x ( 4 ) ∫ 0 π cos 2 x 2 d x (1) \int_{-1}^1\left(x^3-3 x^2\right) d x \quad (2) \int_{-2}^3(x-1)^3 d x \quad (3) \int_0^{2\pi}|\sin x| d x \quad (4) \int_0^\pi\cos^2\frac{x}{2} d x (1)∫−11(x3−3x2)dx(2)∫−23(x−1)3dx(3)∫02π∣sinx∣dx(4)∫0πcos22xdx
解:
(1)
∫
−
1
1
(
x
3
−
3
x
2
)
d
x
=
(
1
4
x
4
−
x
3
)
∣
−
1
1
=
(
1
4
−
1
)
−
(
1
4
+
1
)
=
−
2
\int_{-1}^1\left(x^3-3 x^2\right) d x=\left.\left(\frac{1}{4} x^4-x^3\right)\right|_{-1}^1=\left(\frac{1}{4}-1\right)-\left(\frac{1}{4}+1\right)=-2
∫−11(x3−3x2)dx=(41x4−x3)
−11=(41−1)−(41+1)=−2
(2)
方法一:展开计算
∫
−
2
3
(
x
−
1
)
3
d
x
=
∫
−
2
3
(
x
3
−
3
x
2
+
3
x
−
1
)
d
x
=
(
x
4
4
−
x
3
+
3
2
x
2
−
x
)
∣
−
2
3
=
(
81
4
−
27
+
27
2
−
3
)
−
(
16
4
−
(
−
8
)
+
12
2
−
(
−
2
)
)
=
(
81
−
108
+
54
−
12
4
)
−
(
4
+
8
+
6
+
2
)
=
15
4
−
20
=
−
65
4
\int_{-2}^3(x-1)^3 d x=\int_{-2}^3\left(x^3-3 x^2+3 x-1\right) d x=\left.\left(\frac{x^4}{4}-x^3+\frac{3}{2} x^2-x\right)\right|_{-2}^3=\left(\frac{81}{4}-27+\frac{27}{2}-3\right) - \left(\frac{16}{4}-(-8)+\frac{12}{2}-(-2)\right) = \left(\frac{81-108+54-12}{4}\right) - (4+8+6+2) = \frac{15}{4}-20=-\frac{65}{4}
∫−23(x−1)3dx=∫−23(x3−3x2+3x−1)dx=(4x4−x3+23x2−x)
−23=(481−27+227−3)−(416−(−8)+212−(−2))=(481−108+54−12)−(4+8+6+2)=415−20=−465
方法二:凑微分(见下节,但也可用于此)
令
u
=
x
−
1
u = x-1
u=x−1,
d
u
=
d
x
du = dx
du=dx. 当
x
=
−
2
,
u
=
−
3
x=-2, u=-3
x=−2,u=−3. 当
x
=
3
,
u
=
2
x=3, u=2
x=3,u=2.
∫
−
3
2
u
3
d
u
=
u
4
4
∣
−
3
2
=
2
4
4
−
(
−
3
)
4
4
=
16
4
−
81
4
=
−
65
4
\int_{-3}^2 u^3 du = \left.\frac{u^4}{4}\right|_{-3}^2 = \frac{2^4}{4} - \frac{(-3)^4}{4} = \frac{16}{4} - \frac{81}{4} = \frac{-65}{4}
∫−32u3du=4u4
−32=424−4(−3)4=416−481=4−65
(3)
由于
∣
sin
x
∣
|\sin x|
∣sinx∣ 在
[
0
,
π
]
[0, \pi]
[0,π] 上为
sin
x
\sin x
sinx,在
[
π
,
2
π
]
[\pi, 2\pi]
[π,2π] 上为
−
sin
x
-\sin x
−sinx:
∫
0
2
π
∣
sin
x
∣
d
x
=
∫
0
π
sin
x
d
x
+
∫
π
2
π
(
−
sin
x
)
d
x
=
(
−
cos
x
)
∣
0
π
+
cos
x
∣
π
2
π
=
(
−
cos
π
−
(
−
cos
0
)
)
+
(
cos
2
π
−
cos
π
)
=
(
−
(
−
1
)
−
(
−
1
)
)
+
(
1
−
(
−
1
)
)
=
(
1
+
1
)
+
(
1
+
1
)
=
2
+
2
=
4
\int_0^{2\pi}|\sin x| d x=\int_0^\pi\sin x d x+\int_\pi^{2\pi}(-\sin x) d x = \left.(-\cos x)\right|_0^\pi+\left.\cos x\right|_\pi^{2\pi} = (-\cos\pi - (-\cos 0)) + (\cos 2\pi - \cos\pi) = (-(-1) - (-1)) + (1 - (-1)) = (1+1)+(1+1) = 2+2=4
∫02π∣sinx∣dx=∫0πsinxdx+∫π2π(−sinx)dx=(−cosx)∣0π+cosx∣π2π=(−cosπ−(−cos0))+(cos2π−cosπ)=(−(−1)−(−1))+(1−(−1))=(1+1)+(1+1)=2+2=4
(4)
利用半角公式
cos
2
x
2
=
1
+
cos
x
2
\cos^2\frac{x}{2} = \frac{1+\cos x}{2}
cos22x=21+cosx:
∫
0
π
cos
2
x
2
d
x
=
∫
0
π
1
+
cos
x
2
d
x
=
1
2
(
x
+
sin
x
)
∣
0
π
=
1
2
(
(
π
+
sin
π
)
−
(
0
+
sin
0
)
)
=
1
2
(
π
+
0
−
0
)
=
π
2
\int_0^\pi\cos^2\frac{x}{2} d x=\int_0^\pi\frac{1+\cos x}{2} d x=\left.\frac{1}{2}(x+\sin x)\right|_0^\pi=\frac{1}{2}((\pi+\sin\pi)-(0+\sin 0)) = \frac{1}{2}(\pi+0-0) = \frac{\pi}{2}
∫0πcos22xdx=∫0π21+cosxdx=21(x+sinx)
0π=21((π+sinπ)−(0+sin0))=21(π+0−0)=2π
2. 凑微分法 (第一类换元法)
定积分的凑微分法类似不定积分的凑微分法。其核心思想是观察被积函数
f
(
x
)
f(x)
f(x) 是否可以写成
g
(
ϕ
(
x
)
)
ϕ
′
(
x
)
g(\phi(x))\phi'(x)
g(ϕ(x))ϕ′(x) 的形式,从而通过代换
u
=
ϕ
(
x
)
u=\phi(x)
u=ϕ(x) 来简化积分。
即
∫
a
b
g
(
ϕ
(
x
)
)
ϕ
′
(
x
)
d
x
=
∫
ϕ
(
a
)
ϕ
(
b
)
g
(
u
)
d
u
\int_a^b g(\phi(x))\phi'(x)dx = \int_{\phi(a)}^{\phi(b)} g(u)du
∫abg(ϕ(x))ϕ′(x)dx=∫ϕ(a)ϕ(b)g(u)du。
在实际操作中,常将
d
x
dx
dx 与一部分被积函数凑成某个新变量的微分
d
(
ϕ
(
x
)
)
d(\phi(x))
d(ϕ(x))。
例2
计算下列定积分
( 1 ) ∫ 0 a x e x 2 d x ( 2 ) ∫ 0 π 2 cos 3 x d x ( 3 ) ∫ − 1 1 x ( x 2 + 1 ) 2 d x ( 4 ) ∫ − 2 1 d x 11 + 5 x (1) \int_0^{\sqrt{a}} x e^{x^2} d x \quad (2) \int_0^{\frac{\pi}{2}}\cos 3 x d x \quad (3) \int_{-1}^1\frac{x}{\left(x^2+1\right)^2} d x \quad (4) \int_{-2}^1\frac{d x}{11+5 x} (1)∫0axex2dx(2)∫02πcos3xdx(3)∫−11(x2+1)2xdx(4)∫−2111+5xdx
解:
(1)
注意到
(
x
2
)
′
=
2
x
(x^2)' = 2x
(x2)′=2x,所以
x
d
x
=
1
2
d
(
x
2
)
x dx = \frac{1}{2} d(x^2)
xdx=21d(x2)。
令
u
=
x
2
u=x^2
u=x2。当
x
=
0
,
u
=
0
x=0, u=0
x=0,u=0。当
x
=
a
,
u
=
a
x=\sqrt{a}, u=a
x=a,u=a.
∫
0
a
x
e
x
2
d
x
=
∫
0
a
e
x
2
(
x
d
x
)
=
1
2
∫
0
a
e
u
d
u
=
1
2
e
u
∣
0
a
=
1
2
(
e
a
−
e
0
)
=
1
2
(
e
a
−
1
)
\int_0^{\sqrt{a}} x e^{x^2} d x = \int_0^{\sqrt{a}} e^{x^2} (x dx) = \frac{1}{2}\int_0^a e^u du = \left.\frac{1}{2} e^u\right|_0^a = \frac{1}{2}\left(e^a-e^0\right) = \frac{1}{2}\left(e^a-1\right)
∫0axex2dx=∫0aex2(xdx)=21∫0aeudu=21eu
0a=21(ea−e0)=21(ea−1)
原文写法:
∫
0
a
x
e
x
2
d
x
=
∫
0
a
1
2
e
x
2
d
(
x
2
)
=
1
2
e
x
2
∣
0
a
=
1
2
(
e
a
−
1
)
\int_0^{\sqrt{a}} x e^{x^2} d x=\int_0^{\sqrt{a}}\frac{1}{2} e^{x^2} d\left(x^2\right)=\left.\frac{1}{2} e^{x^2}\right|_0^{\sqrt{a}}=\frac{1}{2}\left(e^a-1\right)
∫0axex2dx=∫0a21ex2d(x2)=21ex2
0a=21(ea−1)
(2)
注意到
(
3
x
)
′
=
3
(3x)' = 3
(3x)′=3,所以
d
x
=
1
3
d
(
3
x
)
dx = \frac{1}{3} d(3x)
dx=31d(3x)。
令
u
=
3
x
u=3x
u=3x。当
x
=
0
,
u
=
0
x=0, u=0
x=0,u=0。当
x
=
π
/
2
,
u
=
3
π
/
2
x=\pi/2, u=3\pi/2
x=π/2,u=3π/2.
∫
0
π
2
cos
3
x
d
x
=
∫
0
π
2
cos
(
3
x
)
1
3
d
(
3
x
)
=
1
3
∫
0
3
π
2
cos
u
d
u
=
1
3
sin
u
∣
0
3
π
2
=
1
3
(
sin
3
π
2
−
sin
0
)
=
1
3
(
−
1
−
0
)
=
−
1
3
\int_0^{\frac{\pi}{2}}\cos 3 x d x = \int_0^{\frac{\pi}{2}}\cos(3x) \frac{1}{3}d(3x) = \frac{1}{3}\int_0^{\frac{3\pi}{2}}\cos u du = \left.\frac{1}{3}\sin u\right|_0^{\frac{3\pi}{2}} = \frac{1}{3}\left(\sin\frac{3\pi}{2}-\sin 0\right) = \frac{1}{3}(-1-0) = -\frac{1}{3}
∫02πcos3xdx=∫02πcos(3x)31d(3x)=31∫023πcosudu=31sinu
023π=31(sin23π−sin0)=31(−1−0)=−31
原文写法:
∫
0
π
2
cos
3
x
d
x
=
1
3
∫
0
π
2
cos
3
x
d
(
3
x
)
=
1
3
sin
3
x
∣
0
π
2
=
1
3
(
sin
(
3
π
/
2
)
−
sin
0
)
=
1
3
(
−
1
−
0
)
=
−
1
3
\int_0^{\frac{\pi}{2}}\cos 3 x d x=\frac{1}{3}\int_0^{\frac{\pi}{2}}\cos 3 x d(3 x)=\left.\frac{1}{3}\sin 3 x\right|_0^{\frac{\pi}{2}}=\frac{1}{3}(\sin(3\pi/2) - \sin 0) = \frac{1}{3}(-1-0)=-\frac{1}{3}
∫02πcos3xdx=31∫02πcos3xd(3x)=31sin3x
02π=31(sin(3π/2)−sin0)=31(−1−0)=−31
(注:原解答中
1
3
(
0
−
1
)
\frac{1}{3}(0-1)
31(0−1) 可能是中间笔误,但结果正确。已修正为标准求值过程。)
(3)
注意到
(
x
2
+
1
)
′
=
2
x
(x^2+1)' = 2x
(x2+1)′=2x,所以
x
d
x
=
1
2
d
(
x
2
+
1
)
x dx = \frac{1}{2} d(x^2+1)
xdx=21d(x2+1)。
令
u
=
x
2
+
1
u=x^2+1
u=x2+1。当
x
=
−
1
,
u
=
2
x=-1, u=2
x=−1,u=2。当
x
=
1
,
u
=
2
x=1, u=2
x=1,u=2.
∫
−
1
1
x
(
x
2
+
1
)
2
d
x
=
∫
−
1
1
1
(
x
2
+
1
)
2
(
x
d
x
)
=
1
2
∫
x
=
−
1
x
=
1
(
x
2
+
1
)
−
2
d
(
x
2
+
1
)
=
1
2
(
x
2
+
1
)
−
1
−
1
∣
−
1
1
=
−
1
2
(
x
2
+
1
)
∣
−
1
1
=
(
−
1
2
(
1
2
+
1
)
)
−
(
−
1
2
(
(
−
1
)
2
+
1
)
)
=
−
1
4
−
(
−
1
4
)
=
0
\begin{align*} \int_{-1}^1\frac{x}{\left(x^2+1\right)^2} d x &= \int_{-1}^1\frac{1}{\left(x^2+1\right)^2} (x dx) \\ &=\frac{1}{2}\int_{x=-1}^{x=1}\left(x^2+1\right)^{-2} d\left(x^2+1\right) \\ &= \left.\frac{1}{2} \frac{(x^2+1)^{-1}}{-1} \right|_{-1}^1 \\ &= \left.-\frac{1}{2(x^2+1)}\right|_{-1}^1 \\ &= \left(-\frac{1}{2(1^2+1)}\right) - \left(-\frac{1}{2((-1)^2+1)}\right) \\ &= -\frac{1}{4} - \left(-\frac{1}{4}\right)=0 \end{align*}
∫−11(x2+1)2xdx=∫−11(x2+1)21(xdx)=21∫x=−1x=1(x2+1)−2d(x2+1)=21−1(x2+1)−1
−11=−2(x2+1)1
−11=(−2(12+1)1)−(−2((−1)2+1)1)=−41−(−41)=0
(此题也可由奇偶性判断,被积函数为奇函数,对称区间积分为0)
(4)
注意到
(
11
+
5
x
)
′
=
5
(11+5x)' = 5
(11+5x)′=5,所以
d
x
=
1
5
d
(
11
+
5
x
)
dx = \frac{1}{5} d(11+5x)
dx=51d(11+5x)。
令
u
=
11
+
5
x
u=11+5x
u=11+5x。当
x
=
−
2
,
u
=
11
+
5
(
−
2
)
=
1
x=-2, u=11+5(-2)=1
x=−2,u=11+5(−2)=1。当
x
=
1
,
u
=
11
+
5
(
1
)
=
16
x=1, u=11+5(1)=16
x=1,u=11+5(1)=16.
∫
−
2
1
d
x
11
+
5
x
=
1
5
∫
x
=
−
2
x
=
1
d
(
11
+
5
x
)
11
+
5
x
=
1
5
ln
∣
11
+
5
x
∣
∣
−
2
1
=
1
5
(
ln
∣
16
∣
−
ln
∣
1
∣
)
=
1
5
ln
16
=
1
5
ln
2
4
=
4
ln
2
5
\int_{-2}^1\frac{d x}{11+5 x}=\frac{1}{5}\int_{x=-2}^{x=1}\frac{d(11+5 x)}{11+5 x}=\left.\frac{1}{5}\ln|11+5 x|\right|_{-2}^1=\frac{1}{5}(\ln|16|-\ln|1|) = \frac{1}{5}\ln 16 = \frac{1}{5}\ln 2^4 = \frac{4\ln 2}{5}
∫−2111+5xdx=51∫x=−2x=111+5xd(11+5x)=51ln∣11+5x∣
−21=51(ln∣16∣−ln∣1∣)=51ln16=51ln24=54ln2
3. 变量代换法 (第二类换元法)
定理
设 f ( x ) f(x) f(x) 在 [ a , b ] [a, b] [a,b] 上连续, x = φ ( t ) x=\varphi(t) x=φ(t) 满足条件:
- φ ( α ) = a , φ ( β ) = b \varphi(\alpha)=a, \varphi(\beta)=b φ(α)=a,φ(β)=b,
- φ ( t ) \varphi(t) φ(t) 在 [ α , β ] [\alpha,\beta] [α,β](或 [ β , α ] [\beta,\alpha] [β,α])上具有连续导数且其值域包含 [ a , b ] [a, b] [a,b],
则
∫
a
b
f
(
x
)
d
x
=
∫
α
β
f
(
φ
(
t
)
)
φ
′
(
t
)
d
t
\int_a^b f(x) d x=\int_\alpha^\beta f(\varphi(t))\varphi^{\prime}(t) d t
∫abf(x)dx=∫αβf(φ(t))φ′(t)dt
证明:
设
f
(
x
)
f(x)
f(x) 的一个原函数为
F
(
x
)
F(x)
F(x),则
F
′
(
x
)
=
f
(
x
)
F'(x) = f(x)
F′(x)=f(x)。
根据复合函数求导法则,
[
F
(
φ
(
t
)
)
]
′
=
F
′
(
φ
(
t
)
)
φ
′
(
t
)
=
f
(
φ
(
t
)
)
φ
′
(
t
)
[F(\varphi(t))]' = F'(\varphi(t))\varphi'(t) = f(\varphi(t))\varphi'(t)
[F(φ(t))]′=F′(φ(t))φ′(t)=f(φ(t))φ′(t)。
因此,
F
(
φ
(
t
)
)
F(\varphi(t))
F(φ(t)) 是
f
(
φ
(
t
)
)
φ
′
(
t
)
f(\varphi(t))\varphi'(t)
f(φ(t))φ′(t) 的一个原函数。
由牛顿-莱布尼兹公式有:
∫
a
b
f
(
x
)
d
x
=
F
(
x
)
∣
a
b
=
F
(
b
)
−
F
(
a
)
\int_a^b f(x) d x=\left.F(x)\right|_a^b=F(b)-F(a)
∫abf(x)dx=F(x)∣ab=F(b)−F(a)
∫
α
β
f
(
φ
(
t
)
)
φ
′
(
t
)
d
t
=
F
(
φ
(
t
)
)
∣
α
β
=
F
(
φ
(
β
)
)
−
F
(
φ
(
α
)
)
=
F
(
b
)
−
F
(
a
)
\int_\alpha^\beta f(\varphi(t))\varphi^{\prime}(t) d t=\left.F(\varphi(t))\right|_\alpha^\beta=F(\varphi(\beta))-F(\varphi(\alpha))=F(b)-F(a)
∫αβf(φ(t))φ′(t)dt=F(φ(t))∣αβ=F(φ(β))−F(φ(α))=F(b)−F(a)
所以,
∫
a
b
f
(
x
)
d
x
=
∫
α
β
f
(
φ
(
t
)
)
φ
′
(
t
)
d
t
\int_a^b f(x) d x=\int_\alpha^\beta f(\varphi(t))\varphi^{\prime}(t) d t
∫abf(x)dx=∫αβf(φ(t))φ′(t)dt
注:
- 该定理给出定积分的换元积分法,即
∫ a b f ( x ) d x = 令 x = φ ( t ) ∫ α β f ( φ ( t ) ) φ ′ ( t ) d t \int_a^b f(x) d x\stackrel{令\,x=\varphi(t)}{=}\int_\alpha^\beta f(\varphi(t))\varphi^{\prime}(t) d t ∫abf(x)dx=令x=φ(t)∫αβf(φ(t))φ′(t)dt
(实际应用中,我们通常是选择合适的代换 x = φ ( t ) x=\varphi(t) x=φ(t) 或 t = ψ ( x ) t=\psi(x) t=ψ(x) 来简化积分。) - 换元必换限:新的积分限 α , β \alpha, \beta α,β 分别由旧的积分限 a , b a,b a,b 通过 a = φ ( α ) a=\varphi(\alpha) a=φ(α) 和 b = φ ( β ) b=\varphi(\beta) b=φ(β) (或 t = ψ ( x ) t=\psi(x) t=ψ(x) 时, α = ψ ( a ) , β = ψ ( b ) \alpha=\psi(a), \beta=\psi(b) α=ψ(a),β=ψ(b)) 确定。
- 与不定积分换元不同,定积分换元后,算出结果即可,无需将新变量换回原变量。
例3
计算下列定积分
( 1 ) ∫ 0 8 1 1 + x 3 d x ( 2 ) ∫ 0 2 1 x + 1 + ( x + 1 ) 3 d x ( 3 ) ∫ 0 a a 2 − x 2 d x ( a > 0 ) (1) \int_0^8\frac{1}{1+\sqrt[3]{x}} d x \quad (2) \int_0^2\frac{1}{\sqrt{x+1}+\sqrt{(x+1)^3}} d x \quad (3) \int_0^a\sqrt{a^2-x^2} d x \quad (a>0) (1)∫081+3x1dx(2)∫02x+1+(x+1)31dx(3)∫0aa2−x2dx(a>0)
解:
(1) 令
x
3
=
t
\sqrt[3]{x}=t
3x=t,则
x
=
t
3
,
d
x
=
3
t
2
d
t
x=t^3, d x=3 t^2 d t
x=t3,dx=3t2dt。
当
x
=
0
x=0
x=0 时
t
=
0
t=0
t=0;当
x
=
8
x=8
x=8 时
t
=
8
3
=
2
t=\sqrt[3]{8}=2
t=38=2。
∫
0
8
1
1
+
x
3
d
x
=
∫
0
2
1
1
+
t
⋅
3
t
2
d
t
=
3
∫
0
2
t
2
1
+
t
d
t
=
3
∫
0
2
t
2
−
1
+
1
1
+
t
d
t
=
3
∫
0
2
(
(
t
−
1
)
(
t
+
1
)
1
+
t
+
1
1
+
t
)
d
t
=
3
∫
0
2
(
t
−
1
+
1
1
+
t
)
d
t
=
3
(
t
2
2
−
t
+
ln
∣
1
+
t
∣
)
∣
0
2
=
3
[
(
2
2
2
−
2
+
ln
∣
1
+
2
∣
)
−
(
0
2
2
−
0
+
ln
∣
1
+
0
∣
)
]
=
3
[
(
2
−
2
+
ln
3
)
−
(
0
−
0
+
ln
1
)
]
=
3
(
ln
3
−
0
)
=
3
ln
3
\begin{align*} \int_0^8\frac{1}{1+\sqrt[3]{x}} d x &= \int_0^2\frac{1}{1+t} \cdot 3 t^2 d t \\ &= 3\int_0^2\frac{t^2}{1+t} d t \\ &= 3\int_0^2\frac{t^2-1+1}{1+t} d t \\ &= 3\int_0^2\left(\frac{(t-1)(t+1)}{1+t}+\frac{1}{1+t}\right) d t \\ &= 3\int_0^2\left(t-1+\frac{1}{1+t}\right) d t \\ &= 3\left.\left(\frac{t^2}{2}-t+\ln|1+t|\right)\right|_0^2 \\ &= 3\left[\left(\frac{2^2}{2}-2+\ln|1+2|\right) - \left(\frac{0^2}{2}-0+\ln|1+0|\right)\right] \\ &= 3\left[(2-2+\ln 3) - (0-0+\ln 1)\right] \\ &= 3(\ln 3 - 0) = 3\ln 3 \end{align*}
∫081+3x1dx=∫021+t1⋅3t2dt=3∫021+tt2dt=3∫021+tt2−1+1dt=3∫02(1+t(t−1)(t+1)+1+t1)dt=3∫02(t−1+1+t1)dt=3(2t2−t+ln∣1+t∣)
02=3[(222−2+ln∣1+2∣)−(202−0+ln∣1+0∣)]=3[(2−2+ln3)−(0−0+ln1)]=3(ln3−0)=3ln3
(2) 令
x
+
1
=
t
\sqrt{x+1}=t
x+1=t,则
x
+
1
=
t
2
⇒
x
=
t
2
−
1
,
d
x
=
2
t
d
t
x+1=t^2 \Rightarrow x=t^2-1, d x=2 t d t
x+1=t2⇒x=t2−1,dx=2tdt。
当
x
=
0
x=0
x=0 时
t
=
0
+
1
=
1
t=\sqrt{0+1}=1
t=0+1=1;当
x
=
2
x=2
x=2 时
t
=
2
+
1
=
3
t=\sqrt{2+1}=\sqrt{3}
t=2+1=3。
(
x
+
1
)
3
=
(
x
+
1
)
3
=
t
3
\sqrt{(x+1)^3} = (\sqrt{x+1})^3 = t^3
(x+1)3=(x+1)3=t3。
∫
0
2
1
x
+
1
+
(
x
+
1
)
3
d
x
=
∫
1
3
1
t
+
t
3
⋅
2
t
d
t
=
2
∫
1
3
t
t
(
1
+
t
2
)
d
t
=
2
∫
1
3
1
1
+
t
2
d
t
=
2
arctan
t
∣
1
3
=
2
(
arctan
3
−
arctan
1
)
=
2
(
π
3
−
π
4
)
=
2
(
4
π
−
3
π
12
)
=
2
(
π
12
)
=
π
6
\begin{align*} \int_0^2\frac{1}{\sqrt{x+1}+\sqrt{(x+1)^3}} d x &= \int_1^{\sqrt{3}}\frac{1}{t+t^3}\cdot 2 t d t \\ &= 2\int_1^{\sqrt{3}}\frac{t}{t(1+t^2)} d t \\ &= 2\int_1^{\sqrt{3}}\frac{1}{1+t^2} d t \\ &= \left.2\arctan t\right|_1^{\sqrt{3}} \\ &= 2(\arctan\sqrt{3}-\arctan 1) \\ &= 2\left(\frac{\pi}{3}-\frac{\pi}{4}\right) = 2\left(\frac{4\pi-3\pi}{12}\right) = 2\left(\frac{\pi}{12}\right) = \frac{\pi}{6} \end{align*}
∫02x+1+(x+1)31dx=∫13t+t31⋅2tdt=2∫13t(1+t2)tdt=2∫131+t21dt=2arctant∣13=2(arctan3−arctan1)=2(3π−4π)=2(124π−3π)=2(12π)=6π
(3) 令
x
=
a
sin
t
(
a
>
0
)
x=a\sin t \quad (a>0)
x=asint(a>0)。则
d
x
=
a
cos
t
d
t
d x=a\cos t d t
dx=acostdt。
当
x
=
0
x=0
x=0 时
a
sin
t
=
0
⇒
sin
t
=
0
⇒
t
=
0
a\sin t = 0 \Rightarrow \sin t = 0 \Rightarrow t=0
asint=0⇒sint=0⇒t=0 (选择主值区间
[
−
π
/
2
,
π
/
2
]
[-\pi/2, \pi/2]
[−π/2,π/2])。
当
x
=
a
x=a
x=a 时
a
sin
t
=
a
⇒
sin
t
=
1
⇒
t
=
π
2
a\sin t = a \Rightarrow \sin t = 1 \Rightarrow t=\frac{\pi}{2}
asint=a⇒sint=1⇒t=2π。
a
2
−
x
2
=
a
2
−
a
2
sin
2
t
=
a
2
(
1
−
sin
2
t
)
=
a
2
cos
2
t
=
∣
a
cos
t
∣
\sqrt{a^2-x^2} = \sqrt{a^2-a^2\sin^2 t} = \sqrt{a^2(1-\sin^2 t)} = \sqrt{a^2\cos^2 t} = |a\cos t|
a2−x2=a2−a2sin2t=a2(1−sin2t)=a2cos2t=∣acost∣。
由于
t
∈
[
0
,
π
/
2
]
t \in [0, \pi/2]
t∈[0,π/2],
a
>
0
a>0
a>0,
cos
t
≥
0
\cos t \ge 0
cost≥0,所以
∣
a
cos
t
∣
=
a
cos
t
|a\cos t| = a\cos t
∣acost∣=acost。
∫
0
a
a
2
−
x
2
d
x
=
∫
0
π
2
a
cos
t
⋅
a
cos
t
d
t
=
a
2
∫
0
π
2
cos
2
t
d
t
=
a
2
∫
0
π
2
1
+
cos
2
t
2
d
t
=
a
2
2
(
t
+
1
2
sin
2
t
)
∣
0
π
2
=
a
2
2
[
(
π
2
+
1
2
sin
π
)
−
(
0
+
1
2
sin
0
)
]
=
a
2
2
[
(
π
2
+
0
)
−
(
0
+
0
)
]
=
π
a
2
4
\begin{align*} \int_0^a\sqrt{a^2-x^2} d x &= \int_0^{\frac{\pi}{2}} a\cos t \cdot a\cos t d t \\ &= a^2\int_0^{\frac{\pi}{2}}\cos^2 t d t \\ &= a^2\int_0^{\frac{\pi}{2}}\frac{1+\cos 2 t}{2} d t \\ &= \frac{a^2}{2}\left.\left(t+\frac{1}{2}\sin 2 t\right)\right|_0^{\frac{\pi}{2}} \\ &= \frac{a^2}{2}\left[\left(\frac{\pi}{2}+\frac{1}{2}\sin\pi\right) - \left(0+\frac{1}{2}\sin 0\right)\right] \\ &= \frac{a^2}{2}\left[\left(\frac{\pi}{2}+0\right) - (0+0)\right] = \frac{\pi a^2}{4} \end{align*}
∫0aa2−x2dx=∫02πacost⋅acostdt=a2∫02πcos2tdt=a2∫02π21+cos2tdt=2a2(t+21sin2t)
02π=2a2[(2π+21sinπ)−(0+21sin0)]=2a2[(2π+0)−(0+0)]=4πa2
(注:该积分的几何意义是半径为
a
a
a 的圆在第一象限的面积。)
关于换元法的注记: 通过上述例子我们发现,定积分的换元积分法和不定积分的换元积分法一样,该做代数代换就做代数代换,该做三角代换就做三角代换。不同的是:不定积分最后要把 t t t 换回 x x x,而定积分不用换回,因为积分的上下限已经换成 t t t 的范围了。
积分等式证明问题及奇偶性应用
所谓积分等式即含有定积分的等式。要证明积分等式,一般是利用变量代换法,有时再结合定积分的区间可加性来证明。特别地,利用函数的奇偶性可以简化在对称区间上的定积分计算。
例1
设 f ( x ) f(x) f(x) 在 [ − a , a ] [-a, a] [−a,a] 上连续,证明:
- 若 f ( x ) f(x) f(x) 为偶函数 (即 f ( − x ) = f ( x ) f(-x)=f(x) f(−x)=f(x)),则 ∫ − a a f ( x ) d x = 2 ∫ 0 a f ( x ) d x \int_{-a}^a f(x) d x=2\int_0^a f(x) d x ∫−aaf(x)dx=2∫0af(x)dx;
- 若 f ( x ) f(x) f(x) 为奇函数 (即 f ( − x ) = − f ( x ) f(-x)=-f(x) f(−x)=−f(x)),则 ∫ − a a f ( x ) d x = 0 \int_{-a}^a f(x) d x=0 ∫−aaf(x)dx=0。
分析: 观察积分等式,积分区间发生变化。先考虑定积分区间可加性:
∫
−
a
a
f
(
x
)
d
x
=
∫
−
a
0
f
(
x
)
d
x
+
∫
0
a
f
(
x
)
d
x
\int_{-a}^a f(x) d x=\int_{-a}^0 f(x) d x+\int_0^a f(x) d x
∫−aaf(x)dx=∫−a0f(x)dx+∫0af(x)dx
因此:
- 要证明 ∫ − a a f ( x ) d x = 2 ∫ 0 a f ( x ) d x \int_{-a}^a f(x) d x=2\int_0^a f(x) d x ∫−aaf(x)dx=2∫0af(x)dx,即需证明 ∫ − a 0 f ( x ) d x = ∫ 0 a f ( x ) d x \int_{-a}^0 f(x) d x=\int_0^a f(x) d x ∫−a0f(x)dx=∫0af(x)dx。
- 要证明 ∫ − a a f ( x ) d x = 0 \int_{-a}^a f(x) d x=0 ∫−aaf(x)dx=0,即需证明 ∫ − a 0 f ( x ) d x = − ∫ 0 a f ( x ) d x \int_{-a}^0 f(x) d x=-\int_0^a f(x) d x ∫−a0f(x)dx=−∫0af(x)dx。
证明:
对于积分
∫
−
a
0
f
(
x
)
d
x
\int_{-a}^0 f(x) d x
∫−a0f(x)dx,令
x
=
−
t
x=-t
x=−t。则
d
x
=
−
d
t
d x=-d t
dx=−dt。
当
x
=
−
a
x=-a
x=−a 时,
t
=
a
t=a
t=a;当
x
=
0
x=0
x=0 时,
t
=
0
t=0
t=0。
所以,
∫
−
a
0
f
(
x
)
d
x
=
∫
a
0
f
(
−
t
)
(
−
d
t
)
=
−
∫
a
0
f
(
−
t
)
d
t
=
∫
0
a
f
(
−
t
)
d
t
\int_{-a}^0 f(x) d x = \int_a^0 f(-t) (-dt) = -\int_a^0 f(-t) dt = \int_0^a f(-t) dt
∫−a0f(x)dx=∫a0f(−t)(−dt)=−∫a0f(−t)dt=∫0af(−t)dt
由于积分变量的符号不影响积分值,
∫
0
a
f
(
−
t
)
d
t
=
∫
0
a
f
(
−
x
)
d
x
\int_0^a f(-t) dt = \int_0^a f(-x) dx
∫0af(−t)dt=∫0af(−x)dx。
因此,
∫
−
a
0
f
(
x
)
d
x
=
∫
0
a
f
(
−
x
)
d
x
\int_{-a}^0 f(x) d x = \int_0^a f(-x) dx
∫−a0f(x)dx=∫0af(−x)dx。
-
若 f ( x ) f(x) f(x) 为偶函数,则 f ( − x ) = f ( x ) f(-x)=f(x) f(−x)=f(x)。
∫ − a 0 f ( x ) d x = ∫ 0 a f ( − x ) d x = ∫ 0 a f ( x ) d x \int_{-a}^0 f(x) d x = \int_0^a f(-x) dx = \int_0^a f(x) dx ∫−a0f(x)dx=∫0af(−x)dx=∫0af(x)dx
所以,
∫ − a a f ( x ) d x = ∫ − a 0 f ( x ) d x + ∫ 0 a f ( x ) d x = ∫ 0 a f ( x ) d x + ∫ 0 a f ( x ) d x = 2 ∫ 0 a f ( x ) d x \int_{-a}^a f(x) d x=\int_{-a}^0 f(x) d x+\int_0^a f(x) d x = \int_0^a f(x) dx + \int_0^a f(x) dx = 2\int_0^a f(x) d x ∫−aaf(x)dx=∫−a0f(x)dx+∫0af(x)dx=∫0af(x)dx+∫0af(x)dx=2∫0af(x)dx -
若 f ( x ) f(x) f(x) 为奇函数,则 f ( − x ) = − f ( x ) f(-x)=-f(x) f(−x)=−f(x)。
∫ − a 0 f ( x ) d x = ∫ 0 a f ( − x ) d x = ∫ 0 a ( − f ( x ) ) d x = − ∫ 0 a f ( x ) d x \int_{-a}^0 f(x) d x = \int_0^a f(-x) dx = \int_0^a (-f(x)) dx = -\int_0^a f(x) dx ∫−a0f(x)dx=∫0af(−x)dx=∫0a(−f(x))dx=−∫0af(x)dx
所以,
∫ − a a f ( x ) d x = ∫ − a 0 f ( x ) d x + ∫ 0 a f ( x ) d x = − ∫ 0 a f ( x ) d x + ∫ 0 a f ( x ) d x = 0 \int_{-a}^a f(x) d x=\int_{-a}^0 f(x) d x+\int_0^a f(x) d x = -\int_0^a f(x) dx + \int_0^a f(x) dx = 0 ∫−aaf(x)dx=∫−a0f(x)dx+∫0af(x)dx=−∫0af(x)dx+∫0af(x)dx=0
注: 该性质在计算定积分时可以直接利用,但要特别注意积分区间必须关于原点对称,即形式为 [ − a , a ] [-a, a] [−a,a]。
例2
计算
∫
−
1
1
1
1
−
x
2
(
1
1
+
e
x
−
1
2
)
d
x
\int_{-1}^1\frac{1}{\sqrt{1-x^2}}\left(\frac{1}{1+e^x}-\frac{1}{2}\right) d x
∫−111−x21(1+ex1−21)dx
解:
该题的被积函数相对比较复杂,正常积分难度较大,而积分区间
[
−
1
,
1
]
[-1, 1]
[−1,1] 正好关于原点对称,因此可考虑被积函数的奇偶性。
令
h
(
x
)
=
1
1
−
x
2
(
1
1
+
e
x
−
1
2
)
h(x) = \frac{1}{\sqrt{1-x^2}}\left(\frac{1}{1+e^x}-\frac{1}{2}\right)
h(x)=1−x21(1+ex1−21)。
其中
f
(
x
)
=
1
1
−
x
2
f(x)=\frac{1}{\sqrt{1-x^2}}
f(x)=1−x21 是偶函数,因为
f
(
−
x
)
=
1
1
−
(
−
x
)
2
=
1
1
−
x
2
=
f
(
x
)
f(-x) = \frac{1}{\sqrt{1-(-x)^2}} = \frac{1}{\sqrt{1-x^2}} = f(x)
f(−x)=1−(−x)21=1−x21=f(x)。
令
g
(
x
)
=
(
1
1
+
e
x
−
1
2
)
g(x)=\left(\frac{1}{1+e^x}-\frac{1}{2}\right)
g(x)=(1+ex1−21)。则
g
(
−
x
)
=
(
1
1
+
e
−
x
−
1
2
)
=
(
1
1
+
1
e
x
−
1
2
)
=
(
e
x
e
x
+
1
−
1
2
)
=
2
e
x
−
(
e
x
+
1
)
2
(
e
x
+
1
)
=
e
x
−
1
2
(
e
x
+
1
)
=
−
1
−
e
x
2
(
1
+
e
x
)
\begin{align*} g(-x) &= \left(\frac{1}{1+e^{-x}}-\frac{1}{2}\right) \\ &= \left(\frac{1}{1+\frac{1}{e^x}}-\frac{1}{2}\right) \\ &= \left(\frac{e^x}{e^x+1}-\frac{1}{2}\right) \\ &= \frac{2e^x-(e^x+1)}{2(e^x+1)} \\ &= \frac{e^x-1}{2(e^x+1)} \\ &= -\frac{1-e^x}{2(1+e^x)} \end{align*}
g(−x)=(1+e−x1−21)=(1+ex11−21)=(ex+1ex−21)=2(ex+1)2ex−(ex+1)=2(ex+1)ex−1=−2(1+ex)1−ex
而
−
g
(
x
)
=
−
(
1
1
+
e
x
−
1
2
)
=
1
2
−
1
1
+
e
x
=
1
+
e
x
−
2
2
(
1
+
e
x
)
=
e
x
−
1
2
(
1
+
e
x
)
-g(x) = -\left(\frac{1}{1+e^x}-\frac{1}{2}\right) = \frac{1}{2} - \frac{1}{1+e^x} = \frac{1+e^x-2}{2(1+e^x)} = \frac{e^x-1}{2(1+e^x)}
−g(x)=−(1+ex1−21)=21−1+ex1=2(1+ex)1+ex−2=2(1+ex)ex−1
所以
g
(
−
x
)
=
−
g
(
x
)
g(-x) = -g(x)
g(−x)=−g(x),即
g
(
x
)
g(x)
g(x)为奇函数。
被积函数
h
(
x
)
=
f
(
x
)
g
(
x
)
h(x) = f(x)g(x)
h(x)=f(x)g(x) 是一个偶函数与一个奇函数的乘积,因此
h
(
x
)
h(x)
h(x) 是奇函数。
根据奇函数在对称区间上的积分性质,得
∫
−
1
1
1
1
−
x
2
(
1
1
+
e
x
−
1
2
)
d
x
=
0
\int_{-1}^1\frac{1}{\sqrt{1-x^2}}\left(\frac{1}{1+e^x}-\frac{1}{2}\right) d x=0
∫−111−x21(1+ex1−21)dx=0
4. 分部积分法
不定积分的分部积分法回顾
不定积分的分部积分公式为:
∫
u
(
x
)
v
′
(
x
)
d
x
=
u
(
x
)
v
(
x
)
−
∫
u
′
(
x
)
v
(
x
)
d
x
\int u(x) v^{\prime}(x) d x = u(x) v(x) - \int u^{\prime}(x) v(x) d x
∫u(x)v′(x)dx=u(x)v(x)−∫u′(x)v(x)dx
或者写作
∫
u
d
v
=
u
v
−
∫
v
d
u
\int u dv = uv - \int v du
∫udv=uv−∫vdu。
定积分的分部积分法
由不定积分的分部积分法可以得到定积分的分部积分法:
∫
a
b
u
(
x
)
v
′
(
x
)
d
x
=
u
(
x
)
v
(
x
)
∣
a
b
−
∫
a
b
u
′
(
x
)
v
(
x
)
d
x
\int_a^b u(x) v^{\prime}(x) d x = \left.u(x) v(x)\right|_a^b - \int_a^b u^{\prime}(x) v(x) d x
∫abu(x)v′(x)dx=u(x)v(x)∣ab−∫abu′(x)v(x)dx
即
∫
a
b
u
d
v
=
u
v
∣
a
b
−
∫
a
b
v
d
u
\int_a^b u dv = \left.uv\right|_a^b - \int_a^b v du
∫abudv=uv∣ab−∫abvdu
注: 分部积分法主要用于计算两类不同函数(如幂函数与三角函数/指数函数,对数函数与幂函数等)乘积的积分。 u ( x ) , v ( x ) u(x), v(x) u(x),v(x) 的选取规则同不定积分,一般遵循“反对幂三指”的优先顺序选择被积函数的一部分为 u u u(反三角函数、对数函数、幂函数、三角函数、指数函数)。
例题
例1
计算
∫
1
5
ln
x
d
x
\int_1^5\ln x d x
∫15lnxdx
解:
令
u
=
ln
x
u=\ln x
u=lnx,
d
v
=
d
x
dv = dx
dv=dx。则
d
u
=
1
x
d
x
du = \frac{1}{x}dx
du=x1dx,
v
=
x
v=x
v=x。
∫
1
5
ln
x
d
x
=
[
x
ln
x
]
1
5
−
∫
1
5
x
⋅
1
x
d
x
=
(
5
ln
5
−
1
ln
1
)
−
∫
1
5
1
d
x
=
5
ln
5
−
0
−
[
x
]
1
5
=
5
ln
5
−
(
5
−
1
)
=
5
ln
5
−
4
\begin{align*} \int_1^5\ln x d x &= \left[x\ln x\right]_1^{5} - \int_1^5 x \cdot \frac{1}{x} d x \\ &= (5\ln 5 - 1\ln 1) - \int_1^5 1 d x \\ &= 5\ln 5 - 0 - \left[x\right]_1^5 \\ &= 5\ln 5 - (5-1) \\ &= 5\ln 5 - 4 \end{align*}
∫15lnxdx=[xlnx]15−∫15x⋅x1dx=(5ln5−1ln1)−∫151dx=5ln5−0−[x]15=5ln5−(5−1)=5ln5−4
原文写法:
∫
1
5
ln
x
d
x
=
∫
1
5
ln
x
⋅
(
x
)
′
d
x
=
x
ln
x
∣
1
5
−
∫
1
5
x
⋅
(
ln
x
)
′
d
x
=
5
ln
5
−
∫
1
5
x
⋅
1
x
d
x
=
5
ln
5
−
∫
1
5
1
d
x
=
5
ln
5
−
4
\int_1^5\ln x d x=\int_1^5\ln x\cdot (x)^{\prime} d x = \left.x\ln x\right|_1^{5}-\int_1^5 x\cdot (\ln x)^{\prime} d x = 5\ln 5-\int_1^5 x\cdot\frac{1}{x} d x = 5\ln 5-\int_1^5 1 d x = 5\ln 5-4
∫15lnxdx=∫15lnx⋅(x)′dx=xlnx∣15−∫15x⋅(lnx)′dx=5ln5−∫15x⋅x1dx=5ln5−∫151dx=5ln5−4
例2
计算
∫
0
1
x
e
x
d
x
\int_0^1 x e^x d x
∫01xexdx
解:
令
u
=
x
u=x
u=x,
d
v
=
e
x
d
x
dv = e^x dx
dv=exdx。则
d
u
=
d
x
du = dx
du=dx,
v
=
e
x
v=e^x
v=ex。
∫
0
1
x
e
x
d
x
=
[
x
e
x
]
0
1
−
∫
0
1
e
x
d
x
=
(
1
⋅
e
1
−
0
⋅
e
0
)
−
[
e
x
]
0
1
=
e
−
(
e
1
−
e
0
)
=
e
−
(
e
−
1
)
=
1
\begin{align*} \int_0^1 x e^x d x &= \left[x e^x\right]_0^1 - \int_0^1 e^x d x \\ &= (1\cdot e^1 - 0\cdot e^0) - \left[e^x\right]_0^1 \\ &= e - (e^1 - e^0) \\ &= e - (e - 1) \\ &= 1 \end{align*}
∫01xexdx=[xex]01−∫01exdx=(1⋅e1−0⋅e0)−[ex]01=e−(e1−e0)=e−(e−1)=1
例3
计算
∫
0
π
x
2
cos
x
d
x
\int_0^\pi x^2\cos x d x
∫0πx2cosxdx
解:
第一次分部积分:令
u
=
x
2
u=x^2
u=x2,
d
v
=
cos
x
d
x
dv = \cos x dx
dv=cosxdx。则
d
u
=
2
x
d
x
du = 2x dx
du=2xdx,
v
=
sin
x
v=\sin x
v=sinx。
∫
0
π
x
2
cos
x
d
x
=
[
x
2
sin
x
]
0
π
−
∫
0
π
2
x
sin
x
d
x
=
(
π
2
sin
π
−
0
2
sin
0
)
−
2
∫
0
π
x
sin
x
d
x
=
0
−
2
∫
0
π
x
sin
x
d
x
=
−
2
∫
0
π
x
sin
x
d
x
\begin{align*} \int_0^\pi x^2\cos x d x &= \left[x^2\sin x\right]_0^\pi - \int_0^\pi 2x\sin x d x \\ &= (\pi^2\sin\pi - 0^2\sin 0) - 2\int_0^\pi x\sin x d x \\ &= 0 - 2\int_0^\pi x\sin x d x \\ &= -2\int_0^\pi x\sin x d x \end{align*}
∫0πx2cosxdx=[x2sinx]0π−∫0π2xsinxdx=(π2sinπ−02sin0)−2∫0πxsinxdx=0−2∫0πxsinxdx=−2∫0πxsinxdx
第二次分部积分 (计算
∫
0
π
x
sin
x
d
x
\int_0^\pi x\sin x d x
∫0πxsinxdx):令
u
=
x
u=x
u=x,
d
v
=
sin
x
d
x
dv = \sin x dx
dv=sinxdx。则
d
u
=
d
x
du = dx
du=dx,
v
=
−
cos
x
v=-\cos x
v=−cosx。
∫
0
π
x
sin
x
d
x
=
[
x
(
−
cos
x
)
]
0
π
−
∫
0
π
(
−
cos
x
)
d
x
=
[
−
x
cos
x
]
0
π
+
∫
0
π
cos
x
d
x
=
(
−
π
cos
π
−
(
−
0
cos
0
)
)
+
[
sin
x
]
0
π
=
(
−
π
(
−
1
)
−
0
)
+
(
sin
π
−
sin
0
)
=
π
+
(
0
−
0
)
=
π
\begin{align*} \int_0^\pi x\sin x d x &= \left[x(-\cos x)\right]_0^\pi - \int_0^\pi (-\cos x) dx \\ &= \left[-x\cos x\right]_0^\pi + \int_0^\pi \cos x d x \\ &= (-\pi\cos\pi - (-0\cos 0)) + \left[\sin x\right]_0^\pi \\ &= (-\pi(-1) - 0) + (\sin\pi - \sin 0) \\ &= \pi + (0-0) = \pi \end{align*}
∫0πxsinxdx=[x(−cosx)]0π−∫0π(−cosx)dx=[−xcosx]0π+∫0πcosxdx=(−πcosπ−(−0cos0))+[sinx]0π=(−π(−1)−0)+(sinπ−sin0)=π+(0−0)=π
所以,
∫
0
π
x
2
cos
x
d
x
=
−
2
(
π
)
=
−
2
π
\int_0^\pi x^2\cos x d x = -2(\pi) = -2\pi
∫0πx2cosxdx=−2(π)=−2π
(注:原文中提到“上一步计算中最后结果有误,正确结果应该是
−
2
π
+
2
sin
x
∣
0
π
=
−
2
π
-2\pi + 2\sin x\big|_0^\pi=-2\pi
−2π+2sinx
0π=−2π”。这里已按正确方法推导并得到
−
2
π
-2\pi
−2π。)
例4
设 f ( x ) = ∫ 1 x 2 sin t t d t f(x)=\int_1^{x^2}\frac{\sin t}{t} d t f(x)=∫1x2tsintdt,求 ∫ 0 1 x f ( x ) d x \int_0^1 x f(x) d x ∫01xf(x)dx。
解:
该题不可能先将
f
(
x
)
f(x)
f(x) 算出来(因为
∫
sin
t
t
d
t
\int\frac{\sin t}{t} d t
∫tsintdt 不是初等函数),再代入定积分中计算。
凡是出现变限积分函数,通常要利用其导数,而定积分中要出现导数常利用分部积分公式。
首先求
f
′
(
x
)
f'(x)
f′(x)。根据变上限积分求导法则:
f
′
(
x
)
=
(
∫
1
x
2
sin
t
t
d
t
)
′
=
sin
(
x
2
)
x
2
⋅
(
x
2
)
′
=
sin
x
2
x
2
⋅
2
x
=
2
sin
x
2
x
f^{\prime}(x)=\left(\int_1^{x^2}\frac{\sin t}{t} d t\right)^{\prime}=\frac{\sin (x^2)}{x^2}\cdot (x^2)^{\prime} = \frac{\sin x^2}{x^2}\cdot 2 x=\frac{2\sin x^2}{x}
f′(x)=(∫1x2tsintdt)′=x2sin(x2)⋅(x2)′=x2sinx2⋅2x=x2sinx2
现在计算
∫
0
1
x
f
(
x
)
d
x
\int_0^1 x f(x) d x
∫01xf(x)dx。
令
u
=
f
(
x
)
u=f(x)
u=f(x),
d
v
=
x
d
x
dv = x dx
dv=xdx。则
d
u
=
f
′
(
x
)
d
x
du = f'(x)dx
du=f′(x)dx,
v
=
x
2
2
v=\frac{x^2}{2}
v=2x2。
∫
0
1
x
f
(
x
)
d
x
=
[
f
(
x
)
⋅
x
2
2
]
0
1
−
∫
0
1
x
2
2
f
′
(
x
)
d
x
\begin{align*} \int_0^1 x f(x) d x &= \left[f(x) \cdot \frac{x^2}{2}\right]_0^1 - \int_0^1 \frac{x^2}{2} f^{\prime}(x) d x \\ \end{align*}
∫01xf(x)dx=[f(x)⋅2x2]01−∫012x2f′(x)dx
计算边界项:
f
(
1
)
=
∫
1
1
2
sin
t
t
d
t
=
∫
1
1
sin
t
t
d
t
=
0
f(1) = \int_1^{1^2}\frac{\sin t}{t} d t = \int_1^1\frac{\sin t}{t} d t = 0
f(1)=∫112tsintdt=∫11tsintdt=0。
f
(
0
)
=
∫
1
0
2
sin
t
t
d
t
=
∫
1
0
sin
t
t
d
t
f(0) = \int_1^{0^2}\frac{\sin t}{t} d t = \int_1^0\frac{\sin t}{t} d t
f(0)=∫102tsintdt=∫10tsintdt.
f
(
x
)
⋅
x
2
2
∣
0
1
=
f
(
1
)
⋅
1
2
2
−
lim
x
→
0
+
f
(
x
)
⋅
x
2
2
=
0
⋅
1
2
−
lim
x
→
0
+
(
∫
1
x
2
sin
t
t
d
t
⋅
x
2
2
)
\left.f(x) \cdot \frac{x^2}{2}\right|_0^1 = f(1)\cdot\frac{1^2}{2} - \lim_{x\to 0^+} f(x)\cdot\frac{x^2}{2} = 0 \cdot \frac{1}{2} - \lim_{x\to 0^+} \left(\int_1^{x^2}\frac{\sin t}{t} d t \cdot \frac{x^2}{2}\right)
f(x)⋅2x2
01=f(1)⋅212−limx→0+f(x)⋅2x2=0⋅21−limx→0+(∫1x2tsintdt⋅2x2)
由于
∫
1
0
sin
t
t
d
t
\int_1^0 \frac{\sin t}{t} dt
∫10tsintdt 是一个常数 (记为
C
0
C_0
C0),
lim
x
→
0
+
f
(
x
)
=
C
0
\lim_{x\to 0^+} f(x) = C_0
limx→0+f(x)=C0。
所以
lim
x
→
0
+
f
(
x
)
⋅
x
2
2
=
C
0
⋅
0
=
0
\lim_{x\to 0^+} f(x)\cdot\frac{x^2}{2} = C_0 \cdot 0 = 0
limx→0+f(x)⋅2x2=C0⋅0=0。
因此,边界项
f
(
x
)
⋅
x
2
2
∣
0
1
=
0
−
0
=
0
\left.f(x) \cdot \frac{x^2}{2}\right|_0^1 = 0 - 0 = 0
f(x)⋅2x2
01=0−0=0。
继续计算积分项:
∫
0
1
x
f
(
x
)
d
x
=
0
−
∫
0
1
x
2
2
⋅
2
sin
x
2
x
d
x
=
−
∫
0
1
x
sin
x
2
d
x
\begin{align*} \int_0^1 x f(x) d x &= 0 - \int_0^1\frac{x^2}{2}\cdot \frac{2\sin x^2}{x} d x \\ &= -\int_0^1 x\sin x^2 d x \end{align*}
∫01xf(x)dx=0−∫012x2⋅x2sinx2dx=−∫01xsinx2dx
对于
∫
0
1
x
sin
x
2
d
x
\int_0^1 x\sin x^2 d x
∫01xsinx2dx,令
w
=
x
2
w=x^2
w=x2。则
d
w
=
2
x
d
x
⇒
x
d
x
=
1
2
d
w
dw = 2x dx \Rightarrow x dx = \frac{1}{2}dw
dw=2xdx⇒xdx=21dw。
当
x
=
0
,
w
=
0
x=0, w=0
x=0,w=0。当
x
=
1
,
w
=
1
x=1, w=1
x=1,w=1。
−
∫
0
1
x
sin
x
2
d
x
=
−
∫
0
1
sin
(
x
2
)
(
x
d
x
)
=
−
1
2
∫
0
1
sin
w
d
w
=
−
1
2
[
−
cos
w
]
0
1
=
1
2
cos
w
∣
0
1
=
1
2
(
cos
1
−
cos
0
)
=
1
2
(
cos
1
−
1
)
\begin{align*} -\int_0^1 x\sin x^2 d x &= -\int_0^1 \sin(x^2) (x dx) \\ &= -\frac{1}{2}\int_0^1\sin w dw \\ &= -\frac{1}{2}\left[-\cos w\right]_0^1 \\ &= \left.\frac{1}{2}\cos w\right|_0^1 \\ &= \frac{1}{2}(\cos 1 - \cos 0) \\ &= \frac{1}{2}(\cos 1 - 1) \end{align*}
−∫01xsinx2dx=−∫01sin(x2)(xdx)=−21∫01sinwdw=−21[−cosw]01=21cosw
01=21(cos1−cos0)=21(cos1−1)
所以,
∫
0
1
x
f
(
x
)
d
x
=
1
2
(
cos
1
−
1
)
\int_0^1 x f(x) d x = \frac{1}{2}(\cos 1 - 1)
∫01xf(x)dx=21(cos1−1)。
总结
定积分的计算方法主要包括:
- 直接法:利用基本积分公式和运算法则。
- 凑微分法 (第一类换元法):将被积函数凑成 g ( ϕ ( x ) ) ϕ ′ ( x ) g(\phi(x))\phi'(x) g(ϕ(x))ϕ′(x) 的形式。
- 变量代换法 (第二类换元法):通过 x = φ ( t ) x=\varphi(t) x=φ(t) 或 t = ψ ( x ) t=\psi(x) t=ψ(x) 进行变量替换,关键在于选取合适的代换并正确改变积分限。
- 分部积分法:用于处理两类不同函数乘积的积分。
在实际计算中,还需注意:
- 换元必换限:进行变量代换时,积分的上下限必须相应改变。
- 奇偶性应用:当积分区间关于原点对称时(如 [ − a , a ] [-a, a] [−a,a]),可利用被积函数的奇偶性简化计算:奇函数积分为0,偶函数积分可简化为 2 ∫ 0 a f ( x ) d x 2\int_0^a f(x)dx 2∫0af(x)dx。
- 变上限积分函数的处理:通常结合分部积分法和变上限积分求导法则。
灵活运用这些方法,并结合积分的性质(如区间可加性),可以有效解决各种定积分问题。