计及源荷不确定性的综合能源生产单元运行调度与容量配置优化研究(Matlab代码实现)

👨‍🎓个人主

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

计及源荷不确定性的综合能源生产单元运行调度与容量配置优化研究

一、综合能源生产单元(IEPU)的定义与核心组成

二、源荷不确定性的主要类型与建模方法

三、运行调度优化目标函数设计

四、容量配置优化的关键约束条件

五、多目标优化算法应用案例

六、鲁棒优化与随机规划对比

七、研究挑战与未来方向

结论

📚2 运行结果

2.1 优化结果

2.2  风光场景聚类

2.3 煤炭灵敏性分析

 2.4 甲烷价格灵敏性分析

2.5 无储气与有储气对比

🎉3 文献来源

🌈4 Matlab代码、数据、文章


💥1 概述

文献来源:

​​

计及源荷不确定性的综合能源生产单元运行调度与容量配置优化研究

摘要:为应对源端可再生能源及荷端负荷需求的随机性波动对综合能源生产单元(integratedenergyproductionunit,IEPU)运行调度及容量配置问题带来的挑战,该文提出一种两阶段随机优化方法。首先,在底层运行优化问题中,通过建立各设备模型及约束条件,提出基于混合整数线性规划(mixed integer linear programming,MILP)的最小成本求解方法;其次,利用蒙特卡洛模拟生成多种随机场景,确定系统在给定容量配置条件下的成本期望;最后,在顶层容量配置优化问题中,以系统容量为决策变量,采用遗传算法调用蒙特卡洛模拟及MILP运行优化算法,实现使IEPU系统全生命周期成本最小的最优容量配置。优化结果表明:底层运行优化中储气的接入使弃光量和碳排放量分别减少5.49%和0.35%,顶层计及源荷不确定性的电力设备容量提升20%左右,更加接近实际场景,验证了所提出方法的有效性。结合参数灵敏度分析,可为IEPU系统的规模化设计提供参考。

关键词:

综合能源生产单元;混合整数线性规划;蒙特卡洛方法;容量配置;两阶段随机优化;

IEPU 是传统综合能源系统(integrated energy system,IES)的一种广义扩展形式。因此,传统 IES

系统的研究方法对 IEPU 系统的运行调度与容量配置具有一定的参考意义。IES 中常见的 P2G 技术具有能量转换及时空平移功能,可为新能源消纳及负荷削峰填谷提供有效途径[4-6]。在融合P2G 的 IES容量优化配置研究方面,目前文献大多集中在确定性优化模型,较少考虑电源及负荷的不确定性。张儒峰等[7]通过采用电–气综合能源系统双层优化调度方法,探究了 P2G 技术在提高光伏消纳比例方面的作用。Zhang 等[8]通过建立融合 P2G 和 CCS 的园区级 IES 系统模型,提出在规划 P2G 的容量时应兼顾可再生能源弃能率与碳排放量之间的此消彼长关系。Ancona[9]将 P2G 作为一种可再生能源储存系统,通过对不同 P2G 储能容量配置进行比较,探讨了 IES 系统效率提升的优化方案。Luo 等[10]建立了以运行效益最大化为目标的储冷、储热、储电和P2G 的优化配置模型,研究了包含 4 种储能方式的IES 对弃电率和环境污染控制成本的影响,结果表明含 P2G 技术的 IES 系统经济效益获得显著提升。然而,在高比例可再生能源电力系统的背景下,上述针对 IES 的确定性容量配置结果在应用于具有较高不确定性的 IEPU 系统中时,往往出现优化性能的显著下降,难以保障效益最大化[11]。在 IES 或 IEPU 的容量配置设计中,为使优化结果尽可能适用于实际场景,应当充分考虑不确定因素对系统优化的影响。目前,用于 IES 规划的不确定优化方法主要有区间优化、模糊优化、随机优化以及鲁棒优化[12]方法,其中两阶段随机规划通过概率分布描述不确定性,使得模型更加贴合实际,在 IES 领域得到了广泛关注。Zhang 等[13]将 IES 的

优化调度问题分为需求侧和供应侧问题,并针对 IES 提出了一种考虑需求响应和储能的两阶段运行 随机优化方法。Li 等[14]建立了包含日前调度层和实时调整层的两阶段优化模型,旨在解决冷热电联供系统中的可再生能源不确定性。Shen 等[15]提出了基于能源枢纽模型的 IES 两阶段随机规划方法,以解决大宗能源系统能源价格的不确定性。上述研究为两阶段随机优化方法解决 IEPU 的不确定性问题提供了理论参考。

本文考虑的融合P2G与 CCS技术的IEPU系统结构如图 1 所示。能源供给侧包括燃煤火力发电机组和光伏发电厂,其他能源转换及消费设备包括二氧化碳捕集环节、甲烷合成环节、电解水制氢设备及电负荷输出环节。数学模型讲解见第4部分。

一、综合能源生产单元(IEPU)的定义与核心组成
  1. 基本定义
    IEPU是一种融合火电低碳改造、可再生能源发电、电解制氢、碳捕集与化工合成的多能耦合系统。其核心目标是通过能源协同优化,实现低碳化生产与灵活性调节,支撑高比例可再生能源电力系统的稳定运行。

  2. 关键设备与耦合特性

    • 设备组成:火电机组(生物质掺烧改造)、光伏/风电、电解槽、甲醇/甲烷合成装置、二氧化碳捕集设备、储氢/储碳装置等。

       

    • 能量流耦合
  • 电能:火电与光伏联合供电,电解制氢作为灵活负荷调节电力供需;
  • 热能:火电机组余热或电锅炉提供热能,用于化工合成或区域供热;
  • 冷能:通过吸收式制冷机或电制冷装置实现冷能供应。

    • 物质流耦合:捕集的CO₂与电解氢合成甲烷/甲醇,形成“电-氢-碳”循环。
  1. 灵活性优势
    IEPU作为虚拟发电单元,其出力调节范围远超传统火电。例如,某案例中IEPU的日调节上限为火电额定功率+光伏出力-制氢下限,下限为火电最小出力-制氢上限,灵活性提升显著。

二、源荷不确定性的主要类型与建模方法
  1. 不确定性来源
    • 源侧
  • 可再生能源出力波动(如光伏受光照强度影响,风电受风速影响);

  • 火电机组故障停运等离散事件。
    • 荷侧
  • 负荷预测偏差(电/热/冷负荷波动);
  • 用户响应行为(价格型或激励型需求响应)。
  1. 建模方法对比

    方法特点适用场景
    概率分布基于历史数据拟合(如Beta分布描述光伏出力)数据充足且分布规律明显
    场景生成蒙特卡洛模拟生成典型场景,用于随机规划多时间尺度优化
    鲁棒优化以不确定集描述极端情况,保证最坏场景下的可行性数据稀缺或风险敏感型系统
    分布鲁棒结合概率分布与不确定集,平衡经济性与鲁棒性需兼顾历史数据与极端事件


示例:两阶段随机优化模型中,第一阶段确定设备容量,第二阶段通过场景树优化运行策略。


三、运行调度优化目标函数设计
  1. 核心设计原则

    • 经济性:最小化投资、运维、燃料成本,最大化电力/燃料销售收入;
    • 低碳化:纳入碳交易成本或碳税,促进减排;

    • 灵活性:通过弃风惩罚成本等约束可再生能源利用率。
  2. 典型目标函数

    其中:

    • BtotBtot​:电力销售、绿氢/甲醇收入、碳补贴;
    • CCO2CCO2​:碳捕集成本或碳交易支出。

四、容量配置优化的关键约束条件
  1. 设备物理约束

    • 出力上下限:火电/光伏额定容量、电解槽功率范围;
    • 爬坡率:火电机组出力变化速率(如±5%额定功率/分钟);
    • 储能约束:储氢/储碳装置容量、充放速率及状态连续性。
  2. 系统平衡约束

    • 电能平衡:发电量=电解制氢+合成装置+外送电网;
    • 物料平衡:CO₂捕集量≥合成需求,氢气产量≥合成消耗。
  3. 市场交互约束

    • 电力外送功率不超过电网传输极限;
    • 天然气/氢气市场供需匹配。

五、多目标优化算法应用案例
  1. 典型算法

    • NSGA-II:用于协调经济性(成本)、环保性(碳排放)、能效(一次能源利用率)目标;
    • AMOWOA:改进鲸鱼算法,解决商业区综合能源系统的日运行收益与能源利用率权衡;
    • 动态层次分析法:结合模糊一致矩阵筛选Pareto最优解。
  2. 案例效果

    • 某火电厂通过多目标优化,煤耗率降低8%,碳排放减少12%;
    • 商业区综合能源系统日运行成本降低13.47%,弃风率下降20%。

六、鲁棒优化与随机规划对比
维度随机规划鲁棒优化分布鲁棒优化
数据需求依赖精确概率分布仅需不确定集边界结合概率分布与不确定集
经济性较高(基于平均场景)较低(考虑最坏情况)中等(平衡经济与鲁棒)
鲁棒性低(无法应对极端事件)高(保证最坏场景可行)较高(覆盖大概率风险)
计算复杂度高(需大量场景生成)低(仅优化边界)中等
典型应用风光出力预测较准的日前市场极端天气频发区域需兼顾历史数据与不确定性的综合系统

七、研究挑战与未来方向
  1. 技术瓶颈

    • 不确定性建模:风光出力与负荷的时空相关性建模仍不完善;
    • 多时间尺度协调:容量配置(年尺度)与实时调度(分钟级)的协同优化;
    • 市场机制融合:电力、碳、绿氢等多市场耦合下的博弈分析。
  2. 创新方向

    • 数字孪生技术:通过实时数据驱动优化模型动态更新;
    • 混合优化框架:随机-分布鲁棒联合优化,提升决策鲁棒性;
    • 低碳产品认证:绿氢/甲醇的碳足迹追溯与市场溢价机制。

结论

IEPU作为火电低碳转型的创新路径,其运行调度与容量配置需深度融合源荷不确定性建模、多能耦合优化及市场机制设计。未来研究需进一步突破多时间尺度协同、数据-物理融合建模等关键技术,推动IEPU在新型电力系统中的规模化应用。

📚2 运行结果

2.1 优化结果

 

 

2.2  风光场景聚类

 

 

 

2.3 煤炭灵敏性分析

 2.4 甲烷价格灵敏性分析

2.5 无储气与有储气对比

有储气:

  无储气: 

🎉3 文献来源

部分理论来源于网络,如有侵权请联系删除。

[1]左逢源,张玉琼,赵强,孙立.计及源荷不确定性的综合能源生产单元运行调度与容量配置两阶段随机优化[J].中国电机工程学报,2022,42(22):8205-8215.DOI:10.13334/j.0258-8013.pcsee.220343.

🌈4 Matlab代码、数据、文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值