[每日一练]丢失信息的员工

该题目来源于力扣:

1965. 丢失信息的雇员 - 力扣(LeetCode)

题目要求:

表: Employees

+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| employee_id | int     |
| name        | varchar |
+-------------+---------+
employee_id 是该表中具有唯一值的列。
每一行表示雇员的 id 和他的姓名。
表: Salaries

+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| employee_id | int     |
| salary      | int     |
+-------------+---------+
employee_id 是该表中具有唯一值的列。
每一行表示雇员的 id 和他的薪水。
 

编写解决方案,找到所有 丢失信息 的雇员 id。当满足下面一个条件时,就被认为是雇员的信息丢失:

雇员的 姓名 丢失了,或者
雇员的 薪水信息 丢失了
返回这些雇员的 id  employee_id , 从小到大排序 。

查询结果格式如下面的例子所示。

 

示例 1:

输入:
Employees table:
+-------------+----------+
| employee_id | name     |
+-------------+----------+
| 2           | Crew     |
| 4           | Haven    |
| 5           | Kristian |
+-------------+----------+
Salaries table:
+-------------+--------+
| employee_id | salary |
+-------------+--------+
| 5           | 76071  |
| 1           | 22517  |
| 4           | 63539  |
+-------------+--------+
输出:
+-------------+
| employee_id |
+-------------+
| 1           |
| 2           |
+-------------+
解释:
雇员 1,2,4,5 都在这个公司工作。
1 号雇员的姓名丢失了。
2 号雇员的薪水信息丢失了。

思路流程 :

首先利用外连接按照id键进行两表的合并,然后利用切片查询法进行空值的查找

merge特殊参数:how='outer'   可以保留两张表的所有内容,缺失的内容补齐null

代码实现:

import pandas as pd

def find_employees(employees: pd.DataFrame, salaries: pd.DataFrame) -> pd.DataFrame:
    data=pd.merge(employees,salaries,how='outer',on='employee_id')
    missing_data = data[data['name'].isnull() | data['salary'].isnull()]
    return missing_data[['employee_id']]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值