在 PyTorch 中,张量的维度有一个标准的约定,特别是用于图像处理任务时(例如卷积神经网络)。通常输入张量的形状是 (batch_size, channels, height, width)
,具体各维度的解释如下:
- 第一维 (
batch_size
):表示输入的批量大小,即一次输入的数据样本数量。假设一次输入 8 张图像,则batch_size=8
。 - 第二维 (
channels
):表示图像的通道数。对于 RGB 图像,这个维度为 3,因为 RGB 图像有 3 个通道;对于灰度图像,这个维度为 1。 - 第三维 (
height
):表示图像的高度,通常以像素为单位,例如 32 表示图像高度为 32 个像素。 - 第四维 (
width
):表示图像的宽度,通常也是像素单位,例如 32 表示图像宽度为 32 个像素。
为什么拼接在第 1 维是通道维度?
torch.cat
函数用于将张量在某个指定维度上拼接(连接)。在图像处理任务中,拼接操作常在通道维度(即第 1 维,channels
维)上进行,而不是在空间维度(height
和 width
)上。
- 第 0 维 (
batch_size
):控制批量中的数据样本数目,通常不改变它,因为网络一次处理多个样本。 - 第 1 维 (
channels
):控制图像的通道数。拼接f
和s
时,选择在通道维度上进行拼接,是因为这能够保留图像的空间结构(高度和宽度),并且允许网络在后续卷积层中处理更多的通道信息。 - 第 2 和第 3 维 (
height
和width
):这些是空间维度,代表图像的高和宽。通常我们不会在这些维度上拼接,因为这会破坏图像的空间结构,导致不规则的输入形状。
如何判断各个维度?
通常,维度的含义可以通过实际问题的上下文来推断。在图像处理任务中,输入张量的形状约定是 (batch_size, channels, height, width)
。这种约定是通用的,尤其是对于卷积操作,因为卷积是基于空间维度(height
和 width
)滑动的,通道维度则控制卷积核的数量。