高等数学学习记录-泰勒公式|麦克劳林公式

引入-极限的定义

设f(x),当x->x0时,f(x)->A, limx->x0f(x)=A

理解:一个函数f(x)在他的自变量趋近一个值x0时,他的函数值也趋向一个固定的常数A的时候,那么我们说当x趋近于x0时f(x)的极限是A

引入-导数的定义

设f(x), x0→x0+▲x, f(x0)→f(x0+▲x),▲y=f(x0+▲x) - f(x0),lim▲x→0 ▲ y ▲ x \frac{▲y}{▲x} xy=f’(x0)

理解:一个函数f(x)当他的自变量从x0取得一个增量▲x时,即自变量从x0变到x0+▲x时,他的函数值从f(x0)变到f(x0+▲x),两个函数值相减就是对应的函数变化值▲y,如果当▲x→0时 ▲ y ▲ x \frac{▲y}{▲x} xy的极限如果存在的话,我们就说f(x)在点x0处可导,把这个极限记作f’(x0),f’(x0)就是f(x)在点x0处的导数,而导数的几何意义f’(x0)即函数f(x0)即函数f(x)的图像在点x0处切线的斜率

tips:n阶导数就是求n次导,几撇为几阶导数如f’'(x)为二阶导数,四阶及以上用括号包裹阶次,如f(4)(x)是代表四阶导数

引入-泰勒

对于一些比较复杂的函数,为了便于研究,往往希望能用一些简单的函数来近似的表达,我们常用多项式来近似表示函数
例如:(x→0)ex ≈ \approx 1+x,ln(1+x) ≈ \approx x,(1+x)a ≈ \approx 1+ax, tan ⁡ \tan tan x ≈ \approx x, sin ⁡ \sin sin x ≈ \approx x
但是这种近似表达式的精确度不高,它所产生的误差仅是关于x的高阶无穷小。为了提高精确度,自然想到用更高次的多项式来逼近于是,提出如下问题:
设f(x)在x,处具有n阶导数,试找出一个关于(x-x0)的n次多项式来近似地表达 f(x)
pn(x) = a0 + a1(x-x0) + a2(x-x0)2 +……+ a(x-x0)n
来近似表达f(x),要求使得 pn(x) 与 f(x) 之差是当 x→x0时比 (x-x0)n 高阶的无穷小。

  • 加粗部分解释:当x→x0时,f(x)-pn(x)=o[(x-x0)n]
    • 解释部分加粗解释:o[f(x)]是一个无穷小量符号,o[(x-x0)]是指(x-x0)n的高阶无穷小,该式称为佩亚诺余项

因为 f(x)-pn(x)=o[(x-x0)n],所以可以改写为 f(x) = o[(x-x0)n ] + pn(x)
即 f(x)=a0 + a1(x-x0) + a2(x-x0)2 + ……+ an(x-x0)n + o[(x-x0)n]
为什么原本的近似会变成相等?
原本的近似是因为存在误差,而高阶无穷小就是这样的一个误差(余项),近似值加上这个误差(精确值),等式两边自然相等

令 x = x0
得到a0 =f(x)

等式两边分别求导,再令x = x0
得到1!a1 = f’(x)

等式两边求导再求导,再令x = x0
得到2!a2 =f’'(x)

以此类推

n!an = f(n)(x)

an = f ( n ) ( x   0   ) n ! \frac{f^{(n)}(x~0~)}{n!} n!f(n)(x 0 )

f(x)=f(x0) + f’(x0)(x-x0) + f ′ ′ ( x   0   ) 2 ! \frac{f''(x~0~)}{2!} 2!f′′(x 0 ) (x-x0)2 + ……+ f ( n ) ( x   0   ) n ! \frac{f^{(n)}(x~0~)}{n!} n!f(n)(x 0 )(x-x0)n + o[(x-x0)n]
我们可以得到
泰勒中值定理1(含佩亚诺余项的泰勒展开):
前提条件:如果函数f(x)在x0处具有n阶导数,那么存在x0的一个领域,对于该临域内的任一x,有

f(x)=f(x0) + f’(x0)(x-x0) + f ′ ′ ( x   0   ) 2 ! \frac{f''(x~0~)}{2!} 2!f′′(x 0 ) (x-x0)2 + ……+ f ( n ) ( x   0   ) n ! \frac{f^{(n)}(x~0~)}{n!} n!f(n)(x 0 )(x-x0)n + Rn(x)
其中Rn = o[(x-x0)n]即佩亚诺余项

泰勒中值定理1(含拉格朗日余项的泰勒展开):
前提条件:如果函数f(x)在x0的某个临域U(x0)内具有(n+1)阶导数,那么对于该临域内的任一x(任一x ∈ \in (x0)),有

f(x)=f(x0) + f’(x0)(x-x0) + f ′ ′ ( x 0 ) 2 ! \frac{f''(x{0})}{2!} 2!f′′(x0) (x-x0)2 + ……+ f ( n ) ( x   0   ) n ! \frac{f^{(n)}(x~0~)}{n!} n!f(n)(x 0 )(x-x0)n + Rn(x)
其中Rn = f ( n + 1 ) ( ξ ) ( n + 1 ) ! \frac{f^{(n +1)}( \xi)}{(n+1)!} (n+1)!f(n+1)(ξ)(x-x0)n 即拉格朗日余项, ξ \xi ξ是x 与x0之间的某个值

泰勒到麦克劳林

比较

泰勒公式:f(x)=f(x0) + f’(x0)(x-x0) + f ′ ′ ( x   0   ) 2 ! \frac{f''(x~0~)}{2!} 2!f′′(x 0 ) (x-x0)2 + ……+ f ( n ) ( x   0   ) n ! \frac{f^( n ^)(x~0~)}{n!} n!f(n)(x 0 )(x-x0)n + f ( n + 1 ) ( ξ ) ( n + 1 ) ! \frac{f^( n +1^)( \xi)}{(n+1)!} (n+1)!f(n+1)(ξ)(x-x0)n , ξ ∈ \xi \in ξ(x,x0)

麦克劳林公式:f(x)=f(0) + f’(0)(x) + f ′ ′ ( 0 ) 2 ! \frac{f''(0)}{2!} 2!f′′(0) (x)2 + ……+ f ( n ) ( 0 ) n ! \frac{f^{(n)}(0)}{n!} n!f(n)(0)(x)n + f ( n + 1 ) ( θ x ) ( n + 1 ) ! \frac{f^{(n +1)}( \theta x)}{(n+1)!} (n+1)!f(n+1)(θx)(x-x0)n, θ ∈ \theta\in θ(0,1)

比较结果:将x0换成了0,将 ξ 换成了 θ x \xi 换成了 \theta x ξ换成了θx

1.f(x)=ex
f(0)=f’(0)=f"(0)=…f(n)(0)=e0=1
f(n+1)( θ \theta θ x )=eθx
根据麦克劳林公式得:
f(x)=f(0)+f’(0)x+ f ′ ′ ( 0 ) 2 ! \frac {f''(0)}{2!} 2!f′′(0)x2+… f n ( x ) n ! x n \frac{f^n(x)}{n!}x^n n!fn(x)xn+ f n + 1 ( θ x ) ( n + 1 ) ! \frac{f^{n+1}(\theta x)}{(n+1)!} (n+1)!fn+1(θx)x(n+1)
ex=e0+e0x+ e 0 2 ! \frac {e^0}{2!} 2!e0x2+……+ e 0 n ! \frac {e^0}{n!} n!e0xn+ e θ x ( n + 1 ) ! \frac{e^{\theta x}}{(n+1)!} (n+1)!eθxx(n+1)
=1+x+ x 2 2 \frac{x^2}{2} 2x2+……+ x n n ! \frac{x^n}{n!} n!xn+ x ( n + 1 ) e θ x ( n + 1 ) ! \frac{x^{(n+1)e^{\theta x}}}{(n+1)!} (n+1)!x(n+1)eθx
≈ \approx 1+x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不笑的鬼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值