唯一分解定理

理论

  1. 算术基本定理(唯一分解定理)
    每个正整数都能够唯一的表示成它的质因数的乘积。
    例如, 280 = 2 3 ∗ 5 1 ∗ 7 1 280 = 2^3 * 5^1 * 7^1 280=235171

  2. n n n 中最多只含有一个大于 n \sqrt{n} n 的因子
    反证法:如果有两个大于 n \sqrt{n} n 的因子,则相乘会大于 n n n

  3. 分解质因数
    2 ∼ n 2 \sim \sqrt{n} 2n 范围枚举,
    遇到质因子就除净并且记录质因子的个数。
    最后如果 n > 1 n > 1 n>1,说明这就是那个大于 n \sqrt{n} n 的质因子。

模板

int a[10001];//质因子的个数
void decompose(int x) {//分解质因子
	for (int i = 2; i * i <= x; i++) {
		while (x % i == 0) {
			a[i]++;
			x /= i;
		}
	}
	if (x > 1) {
		a[x]++;
	}
}

模拟:x=280
i=2, a[2]=3, x=35
i=3, 4,
i=5, a[5]=1, x=7
7>1, a[7]=1

例题

P2043 质因子分解

题目描述
N ! N! N! 进行质因子分解。

输入格式
输入数据仅有一行包含一个正整数 N N N N ≤ 10000 N \leq 10000 N10000

输出格式
输出数据包含若干行,每行两个正整数 p , a p,a p,a,中间用一个空格隔开。表示 N ! N! N! 包含 a a a 个质因子 p p p,要求按 p p p 的值从小到大输出。

输入输出样例 #1
输入 #1

10

输出 #1

2 8
3 4
5 2
7 1

说明/提示
10 ! = 3628800 = ( 2 8 ) × ( 3 4 ) × ( 5 2 ) × 7 10! = 3628800 = (2^8) \times (3^4) \times (5^2) \times 7 10!=3628800=(28)×(34)×(52)×7

#include<bits/stdc++.h>
using namespace std;
int n;
int a[10001];//质因子的个数
void decompose(int x) {//分解质因子
	for (int i = 2; i * i <= x; i++) {
		while (x % i == 0) {
			a[i]++;
			x /= i;
		}
	}
	if (x > 1) {
		a[x]++;
	}
}
int main() {
	cin >> n;
	//n!=1*2*3*4*...*n
	for (int i = 1; i <= n; i++) {
		decompose(i);
	}
	for (int i = 1; i <= n; i++) {
		if (a[i]) {
			cout << i << " " << a[i] << endl;
		}
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值