程序名称:基于最小二乘支持向量机结合自适应带宽核函数密度估计的多变量回归预测 (点预测+概率预测+核密度估计)
实现平台:matlab
代码简介:基于最小二乘支持向量机结合自适应带宽核函数密度估计的多变量回归预测 (点预测+概率预测+核密度估计) ,导入数据即可,无需任何调试。代码具有一定创新性,注释详细!
使用Least Squares Support Vector Machines (LSSVM) 进行回归预测有几个优势:
-
对噪声数据具有较强的鲁棒性:LSSVM 通过引入松弛变量来允许一些训练样本不完全拟合目标值,从而能够更好地处理噪声数据。
-
相对于传统的支持向量机,LSSVM 的计算复杂度较低:传统支持向量机需要通过求解二次规划问题获得权重向量,而 LSSVM 可以通过最小二乘优化问题直接获得权重向量,从而降低了计算复杂度。
-
无需手动选择核函数:与传统的支持向量机不同,LSSVM 无需手动选择合适的核函数,它通过自动选择参数的方式来确定核函数类型和参数值。
-
可解释性强:与其他机器学习算法相比,LSSVM 在生成模型时可以提供更多的可解释性,可以通过对权重向量的分析来理解预测结果的形成过程。
多变量单输出,包括点预测+概率预测+核密度估计曲线,MatlabR2021a及以上版本运行,提供多种置信区间!评价指标包括R2MAE、