所有链接建议使用电脑端打开,手机端打开较慢
程序名称:基于最小二乘支持向量机结合自适应带宽核函数密度估计的多变量回归预测 (点预测+概率预测+核密度估计)
实现平台:matlab
代码简介:基于最小二乘支持向量机结合自适应带宽核函数密度估计的多变量回归预测 (点预测+概率预测+核密度估计) ,导入数据即可,无需任何调试。代码具有一定创新性,注释详细!
使用Least Squares Support Vector Machines (LSSVM) 进行回归预测有几个优势:
-
对噪声数据具有较强的鲁棒性:LSSVM 通过引入松弛变量来允许一些训练样本不完全拟合目标值,从而能够更好地处理噪声数据。
-
相对于传统的支持向量机,LSSVM 的计算复杂度较低:传统支持向量机需要通过求解二次规划问题获得权重向量,而 LSSVM 可以通过最小二乘优化问题直接获得权重向量,从而降低了计算复杂度。
-
无需手动选择核函数:与传统的支持向量机不同,LSSVM 无需手动选择合适的核函数,它通过自动选择参数的方式来确定核函数类型和参数值。
-
可解释性强:与其他机器学习算法相比,LSSVM 在生成模型时可以提供更多的可解释性,可以通过对权重向量的分析来理解预测结果的形成过程。
多变量单输出,包括点预测+概率预测+核密度估计曲线,MatlabR2021a及以上版本运行,提供多种置信区间!评价指标包括R2MAE、RMSE、MAPE、区间覆盖率picp、区间平均宽度百分比pinaw等
传统点预测已不能满足专家的偏好,区间概率预测可提供更多不确定信息,进而更好满足未来预测需求!
自适应带宽核函数密度估计(adaptive bandwidth kernel density estimation)是一种用于估计概率密度函数的非参数方法,它使用核函数对数据进行平滑处理,并通过自动选择合适的带宽参数来适应数据的本地特性。
在传统的核密度估计中,带宽参数控制着核函数的宽度,从而影响了平滑程度和估计的准确性。而自适应带宽核函数密度估计则通过将带宽参数作为每个数据点的函数来进行估计,从而使得每个数据点都有自己独立的带宽参数。自适应带宽核函数密度估计的一种常见方法是基于局部加权回归(local weighted regression)的方法。在这种方法中,对于每个数据点,通过对附近的数据点进行加权回归,来估计它周围的概率密度。权重的选择通常与距离有关,较近的数据点会获得更高的权重。
自适应带宽核函数密度估计的优势在于它能够在不同的数据区域自动调整带宽参数,从而更好地适应数据的局部特性和密度变化。相比于固定带宽的方法,自适应带宽核函数密度估计可以提供更准确的概率密度估计,并更好地捕捉到密度函数的细节和变化。
代码获取方式:极小众高创新!直接套用!自适应带宽核函数密度估计+最小二乘支持向量机回归预测(附matlab代码实现)
运行展示