#Datawhale & 魔搭AI夏令营
一、
赛事任务:
-
参赛者需在可图Kolors 模型的基础上训练LoRA 模型,生成无限风格,如水墨画风格、水彩风格、赛博朋克风格、日漫风格......
-
基于LoRA模型生成 8 张图片组成连贯故事,故事内容可自定义;基于8图故事,评估LoRA风格的美感度及连贯性 样例:偶像少女养成日记
赛事链接:https://tianchi.aliyun.com/s/ce4dc8bf800db1e58d51263ff357d28f
文生图简介:
- 文生图的起源:于早期计算机视觉和图像处理研究,早期技术依赖规则和模板匹配,生成图像质量低、应用场景有限。
- 2000年代的发展,随着统计模型和机器学习技术发展,文生图技术受关注,利用概率图模型和统计语言模型生成图像,但仍受模型复杂性和计算资源限制。
- 2010年代的突破,深度学习使文生图技术取得突破,GAN模型提升了图像生成质量,变种GAN模型使生成逼真图像达到新高度。
- 2020年代新时代,大规模预训练模型出现,如CLIP、DALL - E和Stable Diffusion,使生成高质量、复杂图像成为可能,应用范围广泛,具有商业价值和社会影响力。
文生图知识框架及知识点:
提示词:
提示词很重要,一般写法:主体描述,细节描述,修饰词,艺术风格,艺术家
Lora:Stable Diffusion中的Lora是一种轻量级微调方法,用于对预训练大模型进行针对性优化,以实现对特定主题、风格或任务的精细控制,它不是单一模型,而是一类应用。
ComfyUI:是工作流工具,可简化和优化AI模型配置与训练,用户能通过直观界面和集成功能进行模型微调、数据预处理、图像生成等,还能在前端页面基于节点/流程图设计并执行AIGC文生图或文生视频的pipeline。
ControlNet(参考图控制):用于精确控制图像生成过程,是附加在预训练扩散模型上的可训练神经网络模块,能引入额外控制信号,让用户具体指导图像生成的各个方面。
下面介绍两个参考图控制的例子:
参考图控制类型 | 简介 | 示例 | |
OpenPose姿势控制 | 输入是一张姿势图片(或者使用真人图片提取姿势)作为AI绘画的参考图,输入prompt后,之后AI就可以依据此生成一副相同姿势的图片; | ||
深度图Midas | 输入是一张深度图,输入prompt后,之后AI就可以根据此生成一幅根据深度图的绘制。 |
二、
实操跑码开始:
Step0:开通阿里云PAI-DSW试用https://free.aliyun.com/?productCode=learn
or
在魔搭社区进行授权
链接:https://www.modelscope.cn/my/mynotebook/authorization
Step1:报名赛事!(点击即可跳转)https://tianchi.aliyun.com/competition/entrance/532254
赛事链接:可图Kolors-LoRA风格故事挑战赛_创新应用大赛_天池大赛-阿里云天池的赛制
Step2:在魔搭社区创建PAI实例!(点击即可跳转)https://www.modelscope.cn/my/mynotebook/authorization
链接:魔搭社区
如果之前试用的额度已经过期,可使用魔搭的免费Notebook实例
Step3:30 分钟体验一站式 baseline!
1.下载baseline文件
git lfs install
git clone https://www.modelscope.cn/datasets/maochase/kolors.git
2.进入文件夹,打开baseline文件
3.安装环境,然后重启kernel
4.调整prompt,设置你想要的图片风格,依次修改8张图片的描述(可选)
5.依次顺序运行剩余的代码块,点击代码框左上角执行按钮,最终获得图片
Step4:微调结果上传魔搭(点击即可跳转)https://www.modelscope.cn/models/create
1.移动结果文件
创建terminal,粘贴如下命令,回车执行
mkdir /mnt/workspace/kolors/output & cd
cp /mnt/workspace/kolors/models/lightning_logs/version_0/checkpoints/epoch\=0-step\=500.ckpt /mnt/workspace/kolors/output/
cp /mnt/workspace/kolors/1.jpg /mnt/workspace/kolors/output/
2.下载结果文件
双击进入output文件夹,分别下载两个文件到本地
3.创建并上传模型所需内容
4.来到创空间,查看自己的模型是否发布
最后关闭PAI实例!!!!(点击即可跳转)https://www.modelscope.cn/my/mynotebook/authorization
末尾附代码展示
1.环境安装
!pip install simple-aesthetics-predictor
!pip install -v -e data-juicer
!pip uninstall pytorch-lightning -y
!pip install peft lightning pandas torchvision
!pip install -e DiffSynth-Studio
2.下载数据集
#下载数据集
from modelscope.msdatasets import MsDataset
ds = MsDataset.load(
'AI-ModelScope/lowres_anime',
subset_name='default',
split='train',
cache_dir="/mnt/workspace/kolors/data"
)
import json, os
from data_juicer.utils.mm_utils import SpecialTokens
from tqdm import tqdm
os.makedirs("./data/lora_dataset/train", exist_ok=True)
os.makedirs("./data/data-juicer/input", exist_ok=True)
with open("./data/data-juicer/input/metadata.jsonl", "w") as f:
for data_id, data in enumerate(tqdm(ds)):
image = data["image"].convert("RGB")
image.save(f"/mnt/workspace/kolors/data/lora_dataset/train/{data_id}.jpg")
metadata = {"text": "二次元", "image": [f"/mnt/workspace/kolors/data/lora_dataset/train/{data_id}.jpg"]}
f.write(json.dumps(metadata))
f.write("\n")
3.处理数据集,保存结果
data_juicer_config = """
# global parameters
project_name: 'data-process'
dataset_path: './data/data-juicer/input/metadata.jsonl' # path to your dataset directory or file
np: 4 # number of subprocess to process your dataset
text_keys: 'text'
image_key: 'image'
image_special_token: '<__dj__image>'
export_path: './data/data-juicer/output/result.jsonl'
# process schedule
# a list of several process operators with their arguments
process:
- image_shape_filter:
min_width: 1024
min_height: 1024
any_or_all: any
- image_aspect_ratio_filter:
min_ratio: 0.5
max_ratio: 2.0
any_or_all: any
"""
with open("data/data-juicer/data_juicer_config.yaml", "w") as file:
file.write(data_juicer_config.strip())
!dj-process --config data/data-juicer/data_juicer_config.yaml
import pandas as pd
import os, json
from PIL import Image
from tqdm import tqdm
texts, file_names = [], []
os.makedirs("./data/lora_dataset_processed/train", exist_ok=True)
with open("./data/data-juicer/output/result.jsonl", "r") as file:
for data_id, data in enumerate(tqdm(file.readlines())):
data = json.loads(data)
text = data["text"]
texts.append(text)
image = Image.open(data["image"][0])
image_path = f"./data/lora_dataset_processed/train/{data_id}.jpg"
image.save(image_path)
file_names.append(f"{data_id}.jpg")
data_frame = pd.DataFrame()
data_frame["file_name"] = file_names
data_frame["text"] = texts
data_frame.to_csv("./data/lora_dataset_processed/train/metadata.csv", index=False, encoding="utf-8-sig")
data_frame
4.lora微调
# 下载模型
from diffsynth import download_models
download_models(["Kolors", "SDXL-vae-fp16-fix"])
#模型训练
import os
cmd = """
python DiffSynth-Studio/examples/train/kolors/train_kolors_lora.py \
--pretrained_unet_path models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors \
--pretrained_text_encoder_path models/kolors/Kolors/text_encoder \
--pretrained_fp16_vae_path models/sdxl-vae-fp16-fix/diffusion_pytorch_model.safetensors \
--lora_rank 16 \
--lora_alpha 4.0 \
--dataset_path data/lora_dataset_processed \
--output_path ./models \
--max_epochs 1 \
--center_crop \
--use_gradient_checkpointing \
--precision "16-mixed"
""".strip()
os.system(cmd)
5.加载微调模型
from diffsynth import ModelManager, SDXLImagePipeline
from peft import LoraConfig, inject_adapter_in_model
import torch
def load_lora(model, lora_rank, lora_alpha, lora_path):
lora_config = LoraConfig(
r=lora_rank,
lora_alpha=lora_alpha,
init_lora_weights="gaussian",
target_modules=["to_q", "to_k", "to_v", "to_out"],
)
model = inject_adapter_in_model(lora_config, model)
state_dict = torch.load(lora_path, map_location="cpu")
model.load_state_dict(state_dict, strict=False)
return model
# Load models
model_manager = ModelManager(torch_dtype=torch.float16, device="cuda",
file_path_list=[
"models/kolors/Kolors/text_encoder",
"models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors",
"models/kolors/Kolors/vae/diffusion_pytorch_model.safetensors"
])
pipe = SDXLImagePipeline.from_model_manager(model_manager)
# Load LoRA
pipe.unet = load_lora(
pipe.unet,
lora_rank=16, # This parameter should be consistent with that in your training script.
lora_alpha=2.0, # lora_alpha can control the weight of LoRA.
lora_path="models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt"
)
6. 图片生成
torch.manual_seed(0)
image = pipe(
prompt="二次元,一个紫色短发小女孩,在家中沙发上坐着,双手托着腮,很无聊,全身,粉色连衣裙",
negative_prompt="丑陋、变形、嘈杂、模糊、低对比度",
cfg_scale=4,
num_inference_steps=50, height=1024, width=1024,
)
image.save("1.jpg")