Kafka集群的安装
首先进到software目录当中
然后将安装包上传上来
解压之后的效果如下图所示,并把原始kafka文件名重命名一下:
上传安装包到集群中,并解压。
利用已有的3台机器:node01、node02、node03
修改配置:
·cd config
·vi server.properties
声明Kafka集群对应的一个编号,0、1、2分别代表node01、node02、node03。
所以此时不用改,一会分发给node02、node03的时候要把这个编号改过来。
0: node01
1: node02
2: node03
·需要修改的第二个地方是
修改为:
(去掉注释,把主机名称改了)
·第三个修改的地方为添加以下语句:
在这里添加:
·修改日志的存放路径:
(Kafkadata目录不需要提前创建,它可以自动创建好。)
在这里找这个路径:
·分区数量修改为3:
·Zookeeper集群中的端口号需要修改:
·全部修改完之后保存并退出:
全部修改语句如下所示(以node01为样例):
broker.id=0 从0 开始 ,0 1 2 delete.topic.enable=true //这条在文件中没有,手动添加,默认主题不允许删除 listeners=PLAINTEXT://node01:9092 log.dirs=/root/kafkadata // 数据存放的目录,会自动生成,不需要创建 num.partitions=3 zookeeper.connect=node01:2181,node02:2181,node03:2181 |
返回到software目录里面:
分发kafka的安装包,到其他的节点中:
scp -r kafka node02:$PWD scp -r kafka node03:$PWD |
在其他的节点上,修改broker.id 和 listeners中的主机名。
1.6启动kafka集群
启动脚本和停止脚本命令。
kafka-server-start.sh
kafka-server-stop.sh
以后台守护进程启动:
kafka-server-start.sh -daemon /opt/software/kafka/config/server.properties
注意: 在启动kafka之前,必须先启动zookeeper。
为了使用方便,可以配置环境变量。
Kafka.sh:一键启动和关闭kafka集群。
①添加一个kafka环境变量
②node02、node03也进行相同的配置
③进入到当前目录并把kafka.sh也上传进来
④修改一下权限,让它变成绿色的可执行脚本文件
⑤路径和主机名称修改为和自己一致的
⑥试一下一键启动
安装部署Spark
- 实验目标:
本节课实验将完成Spark 4种部署模式的另外2种,分别是Yarn、windows模式。
- 实验准备工作:
- 三台linux虚拟机
- spark的压缩包
- 实验步骤
Spark-yarn
- 解压缩文件,并重命名为spark-yarn。
tar zxvf spark-3.0.0-bin-hadoop3.2.tgz
mv spark-3.0.0-bin-hadoop3.2 spark-yarn
2.修改配置文件
- 修改hadoop配置文件/opt/software/hadoop/hadoop-2.9.2/etc/hadoop/yarn-site.xml,并分发给其他节点。
是否启动一个线程检查每个任务正使用的虚拟内存量,如果任务超出分配值,则直接将其杀掉,默认是 true
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>
是否启动一个线程检查每个任务正使用的物理内存量,如果任务超出分配值,则直接将其杀掉,默认是 true
<property>
<name>yarn.nodemanager.pmem-check-enabled</name>
<value>false</value>
</property>
- 返回到spark-yarn目录,修改conf/spark-env.sh,添加 JAVA_HOME 和 YARN_CONF_DIR 配置。
mv spark-env.sh.template spark-env.sh
vi spark-env.sh
- 启动HDFS以及Yarn集群
- 提交测试应用
bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode cluster \
./examples/jars/spark-examples_2.12-3.0.0.jar \
10
查看node01:8088页面