机器学习——预测员工离职情况

作业要求:

根据给定的影响员工离职的因素和员工是否离职的记录,分别建立多个分类预测模型:基于信息增益的决策树模型、基于基尼指数的决策树模型、朴素贝叶斯模型、支持向量机模型,还有逻辑回归模型,预测有可能离职的员工;并对各模型进行模型评估。

#本文中的训练集为dataset1,测试集为dataset2
dataset1=pd.read_csv('pfm_train.csv')
dataset2=pd.read_csv('pfm_test.csv')

先导入可能需要的库:

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
  
from sklearn.tree import DecisionTreeClassifier  
from sklearn import datasets 
from sklearn.naive_bayes import GaussianNB 
from sklearn.svm import SVC 

一.数据清洗

1.缺失值处理

检查数据集中是否有缺失值,并决定如何处理(如填充、删除或插值) 

# 统计缺失值
print(dataset1.isnull().sum())#训练集
print(dataset2.i
### 构建员工离职预测模型的方法 #### 数据准备 为了构建有效的决策树模型,需要收集关于企业员工的数据集。此数据应包含多个特征变量以及目标变量——即员工是否已离职的信息。常见的特征可能包括工作满意度、最后评估得分、项目数量、平均每月工时等。 #### 模型选择与训练 一旦拥有了适当的数据集,就可以利用Python中的`scikit-learn`库来创建决策树分类器。通过设置参数如最大深度(`max_depth`)或者最小样本分割数(`min_samples_split`)可以帮助防止过拟合并提高泛化能力[^2]。 ```python from sklearn.tree import DecisionTreeClassifier clf = DecisionTreeClassifier(max_depth=5, min_samples_split=10) ``` #### 预防过拟合 为了避免模型过度适应训练数据而导致对未来数据表现不佳的情况发生,可以采取剪枝措施。具体来说,可以通过调整上述提到的一些超参数来进行预剪枝;另外还可以尝试后剪枝技术,比如成本复杂度修剪(Cost Complexity Pruning),这通常由特定机器学习框架支持实现。 #### Flask集成 为了让非技术人员也能方便地使用这个预测工具,在完成本地测试之后可将其部署成Web服务。借助于Flask这样的轻量级web开发框架,能够快速搭建起一个简单的API接口供前端调用: ```python @app.route('/predict', methods=['POST']) def predict(): data = request.get_json() prediction = clf.predict([data['features']]) return jsonify({'prediction': int(prediction)}) ``` 这样当用户提交新员工的相关信息给服务器端处理时,就能即时获得其潜在的离职风险评估结果了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值