cudnn的section介绍
cuDNN
(CUDA Deep Neural Network library)是NVIDIA提供的用于加速深度学习框架中的卷积操作的库,特别适用于运行在CUDA平台上的GPU。
cudnn主要的二进制文件
cuDNN
(CUDA Deep Neural Network) 库包含多个二进制文件,每个文件负责加速深度学习任务中的不同操作,特别是卷积、归一化、激活等神经网络操作。这些二进制文件主要是动态链接库文件(.so
文件),存储了针对不同任务的具体实现。以下是 cuDNN
库的主要二进制文件及其结构和作用的详细介绍:
-
libcudnn.so
(主文件)cudnn的核心库文件,包含了几乎所有的 API 实现。这个文件提供了用于深度学习任务的核心函数,比如卷积、激活、归一化、池化、RNN等操作的实现。
-
libcudnn_ops_infer.so
cuDNN的推理库文件,专门为推理阶段的操作进行优化。它包含了用于前向推理(inference)的高效实现,适用于推理时的神经网络操作。
-
libcudnn_ops_train.so
cuDNN训练库文件,专门为训练阶段的操作进行优化。与推理不同,训练阶段涉及到反向传播和梯度计算,因此这个库包含了与训练相关的函数和API。
-
libcudnn_cnn_infer.so
用于卷积神经网络(CNN)推理的优化库。该文件针对卷积操作进行了大量优化,特别是在推理阶段的卷积计算。 -
libcudnn_cnn_train.so
用于卷积神经网络(CNN)训练的优化库。该文件与libcudnn_ops_train.so类似,但专门针对卷积操作的训练进行了优化。 -
libcudnn_adv_infer.so
提供了高级推理操作 ,针对更复杂的神经网络模型,提供了额外的优化。它可能包括更复杂的卷积算法或其他推理阶段的高级特性。 -
libcudnn_adv_train.so
提供高级训练操作的库,特别是针对大规模、复杂的神经网络训练任务。 -
libcudnn_static.a
cuDNN的静态链接库版本。与.so 文件不同,静态库会在编译时直接链接到应用程序中,而不是在运行时动态加载。
-
调试与辅助库
cuDNN
库通常还会包含一些调试版本的库文件,它们可能包含更多的调试符号和调试信息,用于在开发和调试深度学习模型时使用。这些库的文件名可能以-dbg
结尾,包含更多的.debug
和.symtab
段,便于调试工具解析符号和源代码信息。
本文以 libcudnn.so
文件为例,详细介绍其常见的section.
使用 objdump
工具查看 cuDNN
库的所有 section:
objdump -h /usr/lib/x86_64-linux-gnu/libcudnn.so
/usr/lib/x86_64-linux-gnu/libcudnn.so: file format elf64-x86-64
Sections:
Idx Name Size VMA LMA File off Algn
0 .note.gnu.build-id 00000024 00000000000001c8 00000000000001c8 000001c8 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA
1 .gnu.hash 00000960 00000000000001f0 00000000000001f0 000001f0 2**3
CONTENTS, ALLOC, LOAD, READONLY, DATA