Frustratometer安装和使用教程初尝试

根据这个网站一步步尝试的Installation — Frustratometer documentationicon-default.png?t=O83Ahttps://frustratometer.readthedocs.io/en/latest/installation.html

一、安装Frustratometer

1、安装Git,前往官网

Giticon-default.png?t=O83Ahttps://git-scm.com/ 在安装过程中选择“Git from the command line and also from 3rd-party software”选项,这样可以确保 Git 被添加到环境变量中。(我当时忘记添加这个选项,所以后来自己添加环境变量的:

    • 打开“设置”,搜索并选择“环境变量”。
    • 在“系统变量”中找到并双击“Path”变量。
    • 点击“新建”,然后添加 Git 的安装路径(如 C:\Program Files\Git\bin)。
    • 点击“确定”保存设置。
  • 重启 PowerShell,然后再次尝试运行 git 命令。)

  • 安装完成后,重新打开 PowerShell。
  • 输入 git --version,如果安装成功,你会看到 Git 的版本信息。

 2、安装主模块

  • 使用 git clone 命令克隆项目仓库到本地。
  • 进入项目目录后,使用 condapip 安装项目所需的依赖包。
git clone https://github.com/HanaJaafari/Frustratometer.git
cd Frustratometer
conda install -c conda-forge --file requirements.txt
pip install -e .

这里因为我用的是python2.5的环境,所以好像pip和setuptools不太兼容的亚子。。。最后一句我就换成了

conda develop .

不嫌麻烦的话也可以一步一步手动安装兼容版本的pip和setuptools

 3、安装可选依赖项

1)  安装 pydca

支持从多个序列比对计算 DCA Potts 模型

git clone https://github.com/cabb99/pydca.git
cd pydca
pip install -e .

2) 安装 pdbfixer

PDBFIXER 是用于修复不完整 PDB 的可选依赖项。

conda install -c conda-forge openmm pdbfixer

二、使用Frustratometer

1、加载蛋白质结构

1)检查并安装prody
pip install prody

2)运行python脚本(和官网不太一样,因为我的python环境不是最新的)

在 Python 2.5 中,你需要用双反斜杠(\\)或者正斜杠(/)来表示路径,确保它们不会被误解为转义字符。

python
import frustratometer
pdb_path = 'E:\\AAAAASPRJ\\Frustratometer\\Frustratometer\\work\\NVVC.pdb'
structure = frustratometer.Structure(pdb_path)
structure.sequence

调用Structure的时候也不是用的官网的full_pdb模块了,可能是弃用了

至此就是成功加载蛋白质结构了

2、创建 AWSEM 模型

根据不同的需求,你可以创建不同的 AWSEM 模型

  • 单个残基的挫折(包含静电作用)
    model_singleresidue = frustratometer.AWSEM(structure, min_sequence_separation_contact=0, dtype=np.float32)

        参数min_sequence_separation_contact=2 表示只有序列分离大于或等于 2 的接触才会被计               算。

  • 单个残基的挫折(不包含静电作用)
    model_singleresidue_noelectrostatics = frustratometer.AWSEM(structure, min_sequence_separation_contact=2, k_electrostatics=0)
    

    参数k_electrostatics=0 表示静电作用的权重设为 0。

  • 突变/构象挫折(包含静电作用)

    model_mutational = frustratometer.AWSEM(structure, k_electrostatics=0, dtype=np.float32)
    

    默认参数会被使用。

  • 突变/构象挫折(不包含静电作用)

    model_mutational_noelectrostatics = frustratometer.AWSEM(structure, k_electrostatics=0, dtype=np.float32)

    与上一个模型相同,但不考虑静电作用。

  • 突变挫折(序列分离为 12)

    model_mutational_seqsep12 = frustratometer.AWSEM(structure, min_sequence_separation_rho=13)
    

    参数min_sequence_separation_rho=13 指定最小序列分离。

  • 典型的 openAWSEM 模型

    model_openAWSEM = frustratometer.AWSEM(structure, min_sequence_separation_contact=10, distance_cutoff_contact=None)
    

    参数min_sequence_separation_contact=10 表示最小接触分离为 10。

1)构建单个残基模型尝试一下

构建模型的时候还会遇到内存不足的情况,可以将参数调低

model_singleresidue = frustratometer.AWSEM(structure, min_sequence_separation_contact=0, dtype=np.float32)
如果还是构建不出来,可能是python环境垃圾太多了,清理一下
import gc
gc.collect()
就成功了
2)计算残基密度(只有在第一步构建的是单个残基的模型才可以计算)
calculated_densities = model_singleresidue.rho_r
print(calculated_densities)

3)计算挫折指数

  • 单个残基指数
    single_residue_frustration = model_singleresidue.frustration(kind='singleresidue')
    print(single_residue_frustration)

  • 单个残基的诱变波动(快速计算所有单个残基的能量和诱变)

    decoy_fluctuation = model_singleresidue.decoy_fluctuation(kind='singleresidue')
    print(decoy_fluctuation)

  • 突变的挫折指数(这个要构建了突变模型才可以做)

    mutational_frustration = model_mutational.frustration(kind='mutational')
    print(mutational_frustration)
    3)能量计算
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值