labelme下载使用AI标注教程(含模型下载链接)

先给出模型下载链接地址----模型下载

导入教程如下

可以为其创建一个虚拟环境,按照下面指令安装

步骤一、创建新环境

conda create -n labelme python=3.8

步骤二、进入环境

conda activate labelme

步骤三、装库

conda install pyqt
conda install pillow

步骤四安装labelme 

pip install labelme

 或者使用清华源安装labelme

pip install pillow -i https://pypi.tuna.tsinghua.edu.cn/simple

如果你想安装最新版本的labelme,可以使用下面的命令:

pip install git+https://github.com/wkentaro/labelme.git

步骤五、启动labelme

labelme

步骤六、导入我发的模型到对应的文件夹里------下载地址

模型一般都会放在C:\Users\xxx\.cache\gdown\下,自己去C盘找找。

模型导入完成后,就可以去使用模型了

### 关于Labelme AI标注工具的使用教程 Labelme 是一款用于图像标注的强大工具,广泛应用于计算机视觉领域中的数据准备阶段。以下是关于如何使用 Labelme 进行标注的相关说明: #### 安装与配置 为了开始使用 Labelme 工具,首先需要安装它以及其依赖项。可以通过 Python 的包管理器 `pip` 来完成安装过程[^3]。 ```bash pip install labelme ``` 如果需要更高级的功能或者自定义设置,则可以考虑从源码编译并安装该软件[^4]。 #### 基本操作指南 启动 Labelme 后,界面会显示基本控件来帮助用户加载图片文件夹、创建新的标签类别等。对于绘制矩形区域的任务,可以选择两种不同的方式之一:“from rectangle” 或者 “by 4 points”。后者允许更加灵活地调整边界框的位置和大小[^2]。 当选择四点画法时,依次点击四个顶角位置即可形成封闭图形;而通过拖拽鼠标左键可以直接拉出预设形状作为初始轮廓再微调细节部分[^5]。 #### 导出格式支持 完成所有必要的标记之后,在保存项目前记得确认所使用的导出格式是否满足后续处理需求(如 JSON 文件)。这些结构化的元数据能够方便其他算法读取解析从而参与到训练流程当中去[^6]。 ```json { "version": "4.5.6", "flags": {}, "shapes": [ { "label": "cat", "points": [[100, 100], [200, 200]], "group_id": null, "shape_type": "rectangle", "flags": {} } ], "imagePath": "example.jpg" } ``` 以上展示了简单的JSON对象实例,其中包了单个目标物体的信息及其对应的坐标参数列表。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小胡学长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值