YOLOv8实例分割并训练自己的数据篇(小白版)

 数据标注及处理

  1. 标注工具:labelme
  2. 标注文件:json格式(标注完后的格式)
  3. 训练数据要求:坐标归一化的txt文件

1.利用labelme进行数据标注 

1.1Labelme 安装方法

首先你得先安装 有Anaconda,然后在你的虚拟环境下运行下列命令:

(前提你是已经配置好了自己的虚拟环境和相关的库,没有的同学请看我另一篇博文

(下面安装图像标注工具labelme)

pip install labelme

安装好后,输入打开图像标注工具labelme的指令:

labelme

 

1.2Labelme 使用教程

使用 labelme 进行场景分割标注的教程详见:labelme(官方教程,打开需要T子)

2.新建训练目录

找个空目录(可以去E盘里),新建文件夹,名称叫做 mydataset,也可以是其他名称,这里的例子是在E盘的mydataset文件夹
在 mydataset新建roadscene_train和roadscene_val文件夹。

标注数据

  • 将准备好的数据集图片文件放置在mydataset目录下的 roadscene_train文件夹。

  • 打开 labelme软件点OpenDir进入选择roadscene_train文件夹。

(Open只能打开一副图片,所以选择OpenDir打开目录所有图片

中文界面解释

下面选择(创建多边形)开始标注图形轮廓

标注完后输入标签

标注完成后,点下一张,它会叫保存,我们直接选Save保存.

标注完后,再复制一份json文件到roadscene_val文件夹里

 


图像标注格式转换

把labelme标注的json数据格式转换成COCO数据格式的。依次输入以下指令:

(我这里是虚拟环境下切换到E盘,如图)

cd mydataset
python labelme2cocoAll.py roadscene_train --output roadscene_train.json
python labelme2coco
评论 31
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小胡学长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值