总结yolov8做图像实例分割训练时的一些常识点

计算机视觉中的几个重要的研究方向。

主要包括图像分类目标检测语义分割实例分割全景分割

那么何为实例分割?

实例分割比目标检测更进一步,涉及识别图像中的各个对象并将它们与图像的其余部分分割开来。


 图像分割可分为:语义分割,实例分割,全景分割。

(a)原图,(b)语义分割,(c)实例分割,(d)全景分割

1、语义分割semantic segmentation):标注方法通常是给每个像素加上标签;常用来识别天空、草地、道路等没有固定形状的不可数事物(stuff)。

2、实例分割instance segmentation):标注方法通常是用包围盒(bbox?)或分割掩码标记目标物体;常用来识别人、动物或工具等可数的、独立的明显物体(things)。

3、全景分割Panoptic Segmentation):结合前面两者,生成统一的、全局的分割图像,既识别事物,也识别物体。

实例分割模型的输出是一组用于勾勒图像中每个对象的掩码或轮廓,以及每个对象的类别标签和置信度分数。当你不仅需要知道图像中对象的位置,还需要了解它们的确切形状时,这个时候实例分割非常有用了。

 快速演示

  1. 环境配置

  • 电脑需要先配置好对应的PyTorch--1.11.0python--3.8/11.3环境
  • 克隆下载yolov8源代码:

    git clone https://github.com/ultralytics/ultralytics

    或者克隆下载对应发行版本的(推荐8.1.0版本)

git clone https://gitee.com/xiaohuxuezhang/ultralytics-v8.1.0.git

下载好后找到对应的ultralytics文件夹,然后输入以下指令安装配置环境:

pip install -e .

快速推理

yolo predict model=yolov8n-seg.pt source='https://ultralytics.com/images/bus.jpg'

原图:

预测后的图片:

分割模型

源码:

from ultralytics im
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小胡学长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值