计算机视觉中的几个重要的研究方向。
主要包括图像分类、目标检测、语义分割、实例分割、全景分割等
那么何为实例分割?
实例分割比目标检测更进一步,涉及识别图像中的各个对象并将它们与图像的其余部分分割开来。
图像分割可分为:语义分割,实例分割,全景分割。
(a)原图,(b)语义分割,(c)实例分割,(d)全景分割
1、语义分割(semantic segmentation):标注方法通常是给每个像素加上标签;常用来识别天空、草地、道路等没有固定形状的不可数事物(stuff)。
2、实例分割(instance segmentation):标注方法通常是用包围盒(bbox?)或分割掩码标记目标物体;常用来识别人、动物或工具等可数的、独立的明显物体(things)。
3、全景分割(Panoptic Segmentation):结合前面两者,生成统一的、全局的分割图像,既识别事物,也识别物体。
实例分割模型的输出是一组用于勾勒图像中每个对象的掩码或轮廓,以及每个对象的类别标签和置信度分数。当你不仅需要知道图像中对象的位置,还需要了解它们的确切形状时,这个时候实例分割非常有用了。
快速演示
-
环境配置
- 电脑需要先配置好对应的PyTorch--1.11.0 和python--3.8/11.3及环境
-
克隆下载yolov8源代码:
git clone https://github.com/ultralytics/ultralytics
或者克隆下载对应发行版本的(推荐8.1.0版本)
git clone https://gitee.com/xiaohuxuezhang/ultralytics-v8.1.0.git
下载好后找到对应的ultralytics文件夹,然后输入以下指令安装配置环境:
pip install -e .
快速推理
yolo predict model=yolov8n-seg.pt source='https://ultralytics.com/images/bus.jpg'
原图:
预测后的图片:
分割模型
源码:
from ultralytics im