正交投影算子

已知P是子空间V上的一个正交投影算子。试证明如下结论:

(1)对于所有 x属于V, 都有 Px =x;

(2)R(P)=V

 

要证明这两个结论,我们首先需要清楚正交投影算子的定义和性质。

已知 PP 是子空间 V 上的一个正交投影算子,意味着对于任意的 x∈V,P 满足以下性质:

1c9c8462262f41979fa1b1e9a88e8455.png

我们将分别证明两个结论。

 

证明 (1):

由于 P 是 V 上的正交投影算子,我们可以将 x 分解为 x=u+w,其中 u∈R(P)(即被投影到的子空间),而 w 是 u 在 R(P) 的正交补。

根据正交投影的性质,我们有:

Px=P(u+w)=Pu+Pw

由于 u 在 R(P) 中,Pu=u。而因为 w 在 R(P) 的正交补,因此 Pw=0。

所以:

Px=u+0=u

但由于 u=x(因为 w=0),对于所有 x∈V,有:

Px=x

因此,结论 (1) 得证

(1)的补充

正交投影的背景

R(P) 中,Pu=u Pu=u。而因为 w 在 R(P)的正交补,因此 Pw=0 的解释

假设 V 是一个内积空间(例如,欧几里得空间),我们有一个正交投影算子 P 将空间中的每个向量 x∈V 投影到一个特定的子空间 W⊆V。

对于任意的向量 x∈V,我们可以将其表示为:

x=u+w

这里:

  • u 是 x 在子空间 W 中的投影(即 u∈W),
  • w 是 x 在 W 的正交补 W⊥W⊥ 中的部分(即 w∈W⊥)。

投影算子的性质

  1. 投影到子空间:我们有:

P(x)=P(u+w)=P(u)+P(w).

  1. 正交性
    • 根据正交投影的定义,任何在子空间 W 中的向量 u 会被它自己投影,即:P(u)=u
    • 而 w 在 W⊥ 中,由于正交投影是将 W⊥ 中的向量映射到子空间 W 的“影子”,所以任何在 W⊥ 中的向量都被映射到零向量:

P(w)=0.

综上所述

因此,当我们将 xx 表示为 u+wu+w 后,我们的计算可以这样总结:

Px=P(u+w)=P(u)+P(w)=u+0=u.Px=P(u+w)=P(u)+P(w)=u+0=u.

这就说明了对 xx 的投影 P(x)P(x) 只是返回了它在子空间 WW 中的部分 uu,而被投影的部分 ww 不在 WW 中,并且它在 WW 的正交补中的部分将被投影到零向量。

所以,Pu=uPu=u 说明 uu 映射到自己,而因为 ww 在 W⊥W⊥,因此 Pw=0Pw=0 得到了如上所述的解释。

证明 (2):

为了证明 R(P)=V,我们需要证明 R(P) 是 V 的整个空间。

根据之前的证明,对于每个 x∈V,我们有 Px=x。若 x 属于 R(P),则根据投影的定义,x 可以被表示为 Pz 对于某个 z∈V。

现在,对于任意的 x∈V,我们有 xx=Px。这表明 V 中的任意向量 xx 都可以被投影算子 P 生成,即每个 x∈V 都在 R(P)R(P) 中。

因此,我们可以得出结论:

R(P)=V

因此,结论 (2) 也得证。

综上所述,两个结论都已成功证明:对于所有 x∈V,都有 Px=x,且 R(P)=V。

(2)的补充

若 x 属于 R(P),则根据投影的定义, x可以被表示为 Pz对于某个 z∈V 的解释

 

当我们讨论正交投影算子 P 时,特别是在描述 R(P)(投影算子的范围)时,确实需要理解每个属于 R(P)R(P) 的向量 x 是如何被表示为 P(z) 的。让我们详细解释这一点。

投影算子的范围 R(P)

  • 定义:投影算子 P 的范围 R(P) 是指所有可以由 P 映射得到的向量集合,形式上是:

R(P)={P(z)∣z∈V}

这意味着 R(P) 包含了所有通过投影算子 PP 从 VV 中的元素得到的向量。

向量 x 属于 R(P)

假设我们有一个向量 x∈R(P),这意味着可以找到某个向量 z∈V 使得 x=P(z)。这是正交投影的核心特性:

  • 任何属于 R(P) 的向量 x 都是从某个输入向量 zz 通过投影获得的。

解释过程

  1. 存在性:因为 x 属于 R(P),我们有:

x=P(z)

这里 z 是某个在 V 中的向量,而 P(z) 是 z 在子空间 W 中的投影。

  1. 向量的表示:对于任何投影,正交性告诉我们:

    • z 可以写作 z=u+w,其中 u∈W 是投影部分(即 u=P(z)),而 w∈W⊥ 是正交部分。
    • 因此,我们可以将 x 表示为 x=P(z)=u。
  2. 完整性:这意味着在子空间 W 内的任何向量 x 都可以通过某个向量 z 被表示为 P(z),从而确保 R(P) 包含了子空间 W 中的所有向量。

总结

所以,若 x 属于 R(P),则自然地存在某个 z∈V,使得 x 可以被写作 x=P(z)。这种性质强调了投影操作的基本概念,即每个向量在其子空间的投影都是由另一个向量经过投影算子确定的。这个性质也说明了范围 R(P) 代表了所有可以通过投影得到的向量。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值