投影矩阵

1. 投影的定义

  考虑向量空间的直和分解 C n = S ⊕ H \mathbb{C}^n=S\oplus H Cn=SH内的任意向量 x ∈ C n x\in\mathbb{C}^n xCn。若 x = x 1 + x 2 x=x_1+x_2 x=x1+x2满足 x 1 ∈ S x_1\in S x1S x 2 ∈ H x_2\in H x2H,并且 X 1 X_1 X1 x 2 x_2 x2是唯一确定的,则称映射 P x = x 1 Px=x_1 Px=x1是向量 x x x沿着子控件 H H H的方向到子空间 S S S的投影,并称 P P P是沿着 H H H的方向到 S S S的投影算子,记为 P S ∣ H P_{S|H} PSH

  齐次线性算子 P P P称为投影算子,若它具有幂等性。

  映射 P ⊥ = I − P P^\perp=I-P P=IP称为 P P P的正交投影算子,若 P P P不仅是幂等矩阵,而且还是Hermitian矩阵。

2. 到列空间的投影矩阵与正交投影矩阵

  任一列满秩矩阵 X = ( x 1 , . . . , x p ) X=(x_1,...,x_p) X=(x1,...,xp),记由 X X X的列张成的线性空间为 L ( X ) \mathcal{L}(X) L(X),到 L ( X ) \mathcal{L}(X) L(X)的投影矩阵为 P X = X ( X ′ X ) − 1 X ′ P_X=X(X'X)^{-1}X' PX=X(XX)1X,到 L ( X ) \mathcal{L}(X) L(X)的正交投影矩阵为 P X ⊥ = I − P X P_{X^\perp} =I-P_X PX=IPX,事实上, P X ⊥ P_{X^\perp} PX为到 L ( X ) \mathcal{L}(X) L(X)的正交空间 L ( X ) ⊥ \mathcal{L}(X)^\perp L(X)的投影矩阵。

说明:取 L ( X ) \mathcal{L}(X) L(X)的一组正交基 u 1 , . . . , u p u_1,...,u_p u1,...,up按列构成矩阵 U = [ u 1 , . . . , u p ] U=[u_1,...,u_p] U=[u1,...,up],任一向量 z ∈ C n z\in\mathbb{C}^n zCn L ( X ) \mathcal{L}(X) L(X)的投影为:
a = < u 1 , z > < u 1 , u 1 > u 1 + < u 2 , z > < u 2 , u 2 > u 2 + . . . + < u p , z > < u p , u p > u p = [ u 1 , . . . , u p ] [ u 1 H < u 1 , u 1 > u 2 H < u 2 , u 2 > . . . u p H < u p , u p > ] z = [ u 1 , . . . , u p ] d i a g ( ( u 1 H u 1 ) − 1 , . . . , ( u p H u p ) − 1 ) [ u 1 H u 2 H . . . u p H ] z = U ( U H U ) − 1 U H z \begin{aligned} a&=\frac{<u_1,z>}{<u_1,u_1>}u_1+\frac{<u_2,z>}{<u_2,u_2>}u_2+...+\frac{<u_p,z>}{<u_p,u_p>}u_p \\&=[u_1,...,u_p]\left[\begin{matrix} \frac{u_1^H}{<u_1,u_1>}\\ \frac{u_2^H}{<u_2,u_2>}\\ ...\\ \frac{u_p^H}{<u_p,u_p>} \end{matrix} \right]z \\&=[u_1,...,u_p]diag((u_1^Hu_1)^{-1},...,(u_p^Hu_p)^{-1})\left[\begin{matrix} u_1^H\\ u_2^H\\ ...\\ u_p^H \end{matrix} \right]z \\&=U(U^HU)^{-1}U^Hz \end{aligned} a=<u1,u1><u1,z>u1+<u2,u2><u2,z>u2+...+<up,up><up,z>up=[u1,...,up]<u1,u1>u1H<u2,u2>u2H...<up,up>upHz=[u1,...,up]diag((u1Hu1)1,...,(upHup)1)u1Hu2H...upHz=U(UHU)1UHz
U ( U H U ) − 1 U H U(U^HU)^{-1}U^H U(UHU)1UH是到 L ( X ) \mathcal{L}(X) L(X)的投影矩阵。设 A A A U U U的过渡矩阵为 P P P,则 P P P是可逆矩阵, U = A P U=AP U=AP
U ( U H U ) − 1 U H = A P ( ( A P ) H A P ) − 1 ( A P ) H = A P P − 1 ( A H A ) − 1 ( P H ) − 1 P H A H = A ( A H A ) − 1 A H U(U^HU)^{-1}U^H=AP((AP)^HAP)^{-1}(AP)^H=APP^{-1}(A^HA)^{-1}(P^H)^{-1}P^HA^H=A(A^HA)^{-1}A^H U(UHU)1UH=AP((AP)HAP)1(AP)H=APP1(AHA)1(PH)1PHAH=A(AHA)1AH
A ( A H A ) − 1 A H A(A^HA)^{-1}A^H A(AHA)1AH是到 L ( X ) \mathcal{L}(X) L(X)的投影矩阵。

3. 一个有用的结果

  设 X X X n × p n\times p n×p阶列满秩矩阵, V V V n × n n\times n n×n阶正定矩阵,对任意满足 A ′ X = 0 A'X=0 AX=0 n × ( n − p ) n\times(n-p) n×(np)阶列满秩矩阵 A A A,有:
A ( A ′ V A ) − 1 A ′ = V − 1 − V − 1 X ( X ′ V − 1 X ) − 1 X ′ V − 1 A(A'VA)^{-1}A'=V^{-1}-V^{-1}X(X'V^{-1}X)^{-1}X'V^{-1} A(AVA)1A=V1V1X(XV1X)1XV1

上式用投影矩阵的形式可写为: P V 1 / 2 A = I − P V − 1 / 2 X P_{V^{1/2}A}=I-P_{V^{-1/2}X} PV1/2A=IPV1/2X

  特别的,当 V = I V=I V=I时,有 P A = I − P X = P X ⊥ P_A=I-P_X=P_{X^\perp} PA=IPX=PX

  从投影的角度理解: L ( V 1 / 2 A ) \mathcal{L}(V^{1/2}A) L(V1/2A)中的任一元素可写为 V 1 / 2 A a V^{1/2}Aa V1/2Aa L ( V − 1 / 2 X ) \mathcal{L}(V^{-1/2}X) L(V1/2X)中的任一元素可写为 V − 1 / 2 X b V^{-1/2}Xb V1/2Xb ( V 1 / 2 A a ) ′ ( V − 1 / 2 X b ) = a ′ A ′ V 1 / 2 V − 1 / 2 X b = a ′ A ′ X b = 0 (V^{1/2}Aa)'(V^{-1/2}Xb)=a'A'V^{1/2}V^{-1/2}Xb=a'A'Xb=0 (V1/2Aa)(V1/2Xb)=aAV1/2V1/2Xb=aAXb=0
表明 L ( V 1 / 2 A ) \mathcal{L}(V^{1/2}A) L(V1/2A) L ( V − 1 / 2 X ) \mathcal{L}(V^{-1/2}X) L(V1/2X)正交,即有 P V 1 / 2 A = P ( V − 1 / 2 X ) ⊥ = I − P V − 1 / 2 X P_{V^{1/2}A}=P_{(V^{-1/2}X)^\perp}=I-P_{V^{-1/2}X} PV1/2A=P(V1/2X)=IPV1/2X

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值