奇点
奇点:不解析的点
洛朗级数:
孤立奇点:
在z0处不解析,在z0周围一个去心邻域内处处解析,则z0为孤立奇点,可根据洛朗级数展开项分为可去奇点,极点,本性奇点三种
可去奇点:
f(z)在z0奇点处的洛朗级数展开式没有负幂项
类似于可去间断点,在次点处的极限值等于此点处的函数值
本性奇点:
在洛朗级数展开式中有无穷个负幂项
极点:
含有有限个负幂项,最高负幂项为-m,则称为是m级极点
判断方法:
用导数确定零点,进而来确定是几级奇点
无穷远点处:
做倒数,判断是0是其什么奇点,则∞就是f的什么奇点
留数
定义
留数定理
求沿闭合曲线C的积分,就转化为被积函数在C中的各孤立奇点处的留数;
求函数在奇点处的留数,只需求出以奇点为中心的圆环域内洛朗级数的负一项的系数即可。
留数的计算
上面公式的记忆:从后向前,乘导极除
计算规则三:
计算规则二中,当所求的留数好计算时,可以适当增大级数,使其可以与f(z)的分母想约分。
计算规则四:
利用留数求积分
1、找出积分区域内所有奇点
2、判断奇点的类型
3、计算留数
4、代入公式