复变函数——留数

奇点

奇点:不解析的点

洛朗级数:

孤立奇点:

在z0处不解析,在z0周围一个去心邻域内处处解析,则z0为孤立奇点,可根据洛朗级数展开项分为可去奇点,极点,本性奇点三种

可去奇点:

                   f(z)在z0奇点处的洛朗级数展开式没有负幂项

                  类似于可去间断点,在次点处的极限值等于此点处的函数值

本性奇点:

在洛朗级数展开式中有无穷个负幂项

极点:

含有有限个负幂项,最高负幂项为-m,则称为是m级极点

判断方法:

 用导数确定零点,进而来确定是几级奇点

无穷远点处:

倒数,判断是0是其什么奇点,则∞就是f的什么奇点

留数

定义

留数定理

求沿闭合曲线C的积分,就转化为被积函数在C中的各孤立奇点处的留数;

求函数在奇点处的留数,只需求出以奇点为中心的圆环域内洛朗级数的负一项的系数即可。

留数的计算

上面公式的记忆:从后向前,乘导极除

计算规则三:

计算规则二中,当所求的留数好计算时,可以适当增大级数,使其可以与f(z)的分母想约分。

计算规则四:

利用留数求积分

1、找出积分区域内所有奇点

2、判断奇点的类型

3、计算留数

4、代入公式

利用留数求定积分
【复变函数笔记】洛朗级数、留数及其应用_复变函数中常用的级数-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值