复变函数 | 留数

复变函数 | 留数

5.1 一般理论

5.1.1 留数(Residue)的定义及留数定理

D e f i n i t i o n \bf Definition Definition(留数)

  • z 0 ∈ C z_0\in\mathbb C z0C f ( z ) f(z) f(z)的孤立奇点,即 ∃ r > 0 \exists r>0 r>0使得 f ( z ) f(z) f(z) 0 < ∣ z − z 0 ∣ < r 0<|z-z_0|<r 0<zz0<r解析

∀ 0 < ρ < r , 1 2 π i ∮ C ρ ( z 0 ) f ( z ) d z \forall 0<\rho<r ,\frac{1}{2\pi i}\oint_{C_\rho(z_0)}f(z)\mathrm{d}z ∀0<ρ<r2πi1Cρ(z0)f(z)dz

  • 称为 f ( z ) f(z) f(z) z 0 z_0 z0 的留数,记作 R e s ( f , z 0 ) \mathrm{Res}(f,z_0) Res(f,z0)

∞ \infty f ( z ) f(z) f(z)的孤立奇点,即 ∃ R > 0 \exists R>0 R>0使得 f ( z ) f(z) f(z) ∣ z ∣ > R |z|>R z>R解析
∀ ρ > R , 1 2 π i ∮ C ρ ( 0 ) f ( z ) d z \forall \rho>R ,\frac{1}{2\pi i}\oint_{C_\rho(0)}f(z)\mathrm{d}z ρ>R2πi1Cρ(0)f(z)dz
称为 f ( z ) f(z) f(z) ∞ \infty 的留数,记作 R e s ( f , ∞ ) \mathrm{Res}(f,\infty) Res(f,)

R e m a r k \bf Remark Remark

(1) 由Cauchy积分定理,留数与 ρ \rho ρ的选取无关

(2) 积分的方向取正向,即有限点处的留数取逆时针,无穷远点处的留数取顺时针

由Cauchy积分定理,容易得到下面的定理

T h e o r e m \bf Theorem Theorem(留数定理)

(1) 设 D D D 是由有限条分段光滑简单闭合曲线 C C C 围成的有界区域, z 1 , … , z s ∈ D z_1,\dots,z_s\in D z1,,zsD

f ( z ) f(z) f(z) D \ { z 1 , z 2 , … , z s } D\backslash\{z_1,z_2,\dots,z_s\} D\{z1,z2,,zs}解析,且在 D ‾ \ { z 1 , z 2 , … , z s } \overline D\backslash\{z_1,z_2,\dots,z_s\} D\{z1,z2,,zs}连续则
1 2 π i ∮ C f ( z ) d z = ∑ k = 1 s R e s ( f , z k ) \frac{1}{2\pi i}\oint_Cf(z)\mathrm{d}z=\sum_{k=1}^s\mathrm{Res}(f,z_k) 2πi1Cf(z)dz=k=1sRes(f,zk)
(2) 若 f ( z ) f(z) f(z) C \ { z 1 , z 2 , … , z s } \mathbb C\backslash\{z_1,z_2,\dots,z_s\} C\{z1,z2,,zs} 解析,则
∑ k = 1 s R e s ( f , z k ) + R e s ( f , ∞ ) = 0 \sum_{k=1}^s\mathrm{Res}(f,z_k)+\mathrm{Res}(f,\infty)=0 k=1sRes(f,zk)+Res(f,)=0

5.1.2 留数的计算

z 0 ∈ C z_0\in\mathbb C z0C f ( z ) f(z) f(z) 的孤立奇点,即 ∃ r > 0 \exists r>0 r>0 使得 f ( z ) f(z) f(z) 0 < ∣ z − z 0 ∣ < r 0<|z-z_0|<r 0<zz0<r 解析

从而有Laurent展式
f ( z ) = ∑ n = − ∞ + ∞ β n ( z − z 0 ) n , ∀ 0 < ρ < r f(z)=\sum_{n=-\infty}^{+\infty}\beta_n(z-z_0)^n , \forall 0<\rho<r f(z)=n=+βn(zz0)n∀0<ρ<r
它在 C ρ ( z 0 ) C_\rho(z_0) Cρ(z0)(逆时针)一致收敛


R e s ( f , z 0 ) = 1 2 π i ∮ C ρ ( z 0 ) ∑ n = − ∞ + ∞ β n ( z − z 0 ) n d z = 1 2 π i ∑ n = − ∞ + ∞ ∮ C ρ ( z 0 ) β n ( z − z 0 ) n d z \mathrm{Res}(f,z_0) =\frac{1}{2\pi i}\oint_{C_\rho(z_0)}\sum_{n=-\infty}^{+\infty}\beta_n(z-z_0)^n\mathrm{d}z =\frac{1}{2\pi i}\sum_{n=-\infty}^{+\infty}\oint_{C_\rho(z_0)}\beta_n(z-z_0)^n\mathrm{d}z Res(f,z0)=2πi1Cρ(z0)n=+βn(zz0)ndz=2πi1n=+Cρ(z0)βn(zz0)ndz
注意到只有当 n = − 1 n=-1 n=1 时上面的积分才非零,从而 R e s ( f , z 0 ) = β − 1 \mathrm{Res}(f,z_0)=\beta_{-1} Res(f,z0)=β1

(1) 当 z 0 z_0 z0 是可去奇点, R e s ( f , z 0 ) = 0 \mathrm{Res}(f,z_0)=0 Res(f,z0)=0

(2) 当 z 0 z_0 z0 m m m 阶极点,
f ( z ) = ∑ n = − m + ∞ β n ( z − z 0 ) n = φ ( z ) ( z − z 0 ) m f(z)=\sum_{n=-m}^{+\infty}\beta_n(z-z_0)^n=\frac{\varphi(z)}{(z-z_0)^m} f(z)=n=m+βn(zz0)n=(zz0)mφ(z)
其中 φ ( z ) = β − m + β − m + 1 ( z − z 0 ) + … \varphi(z)=\beta_{-m}+\beta_{-m+1}(z-z_0)+\dots φ(z)=βm+βm+1(zz0)+ ∣ z − z 0 ∣ < r |z-z_0|<r zz0<r 解析,且 φ ( z 0 ) = β − m ≠ 0 \varphi(z_0)=\beta_{-m}\neq0 φ(z0)=βm=0

从而
β − 1 = φ ( m − 1 ) ( z 0 ) ( m − 1 ) ! \beta_{-1}=\frac{\varphi^{(m-1)}(z_0)}{(m-1)!} β1=(m1)!φ(m1)(z0)

R e s ( f , z 0 ) = lim ⁡ z → z 0 [ f ( z ) ( z − z 0 ) m ] ( m − 1 ) ( m − 1 ) ! \mathrm{Res}(f,z_0)=\lim_{z\to z_0}\frac{[f(z)(z-z_0)^m]^{(m-1)}}{(m-1)!} Res(f,z0)=zz0lim(m1)![f(z)(zz0)m](m1)
(3) 当 z 0 z_0 z0是本性奇点,没有特别的方法,一般尝试将 f ( z ) f(z) f(z)展开为Laurent展式,或按照定义计算积分

∞ ∈ C \infty\in\mathbb C C f ( z ) f(z) f(z) 的孤立奇点,即 ∃ R > 0 \exists R>0 R>0 使得 f ( z ) f(z) f(z) ∣ z ∣ > R |z|>R z>R 解析

从而有Laurent展式 f ( z ) = ∑ n = − ∞ + ∞ β n z n f(z)=\sum_{n=-\infty}^{+\infty}\beta_nz^n f(z)=n=+βnzn ∀ ρ > R \forall \rho>R ρ>R ,它在 C ρ ( 0 ) ( 顺时针 ) C_\rho(0) (顺时针) Cρ(0)(顺时针)一致收敛


R e s ( f , ∞ ) = 1 2 π i ∮ C ρ ( 0 ) ∑ n = − ∞ + ∞ β n z n d z = 1 2 π i ∑ n = − ∞ + ∞ ∮ C ρ ( 0 ) β n z n d z \mathrm{Res}(f,\infty) =\frac{1}{2\pi i}\oint_{C_\rho(0)}\sum_{n=-\infty}^{+\infty}\beta_nz^n\mathrm{d}z =\frac{1}{2\pi i}\sum_{n=-\infty}^{+\infty}\oint_{C_\rho(0)}\beta_nz^n\mathrm{d}z Res(f,)=2πi1Cρ(0)n=+βnzndz=2πi1n=+Cρ(0)βnzndz
注意到只有当 n = − 1 n=-1 n=1 时上面的积分才非零,从而 R e s ( f , ∞ ) = − β − 1 \mathrm{Res}(f,\infty)=-\beta_{-1} Res(f,)=β1

lim ⁡ z → ∞ f ( z ) = 0 \lim_{z\to\infty}f(z)=0 limzf(z)=0 ,则
f ( z ) = ∑ n = − ∞ − 1 β n z n = β − 1 z + β − 2 z 2 + … f(z)=\sum_{n=-\infty}^{-1}\beta_nz^n=\frac{\beta_{-1}}{z}+\frac{\beta_{-2}}{z^2}+\dots f(z)=n=1βnzn=zβ1+z2β2+
于是 β − 1 = lim ⁡ z → ∞ z f ( z ) \beta_{-1}=\lim_{z\to\infty}zf(z) β1=limzzf(z),即 R e s ( f , ∞ ) = − lim ⁡ z → ∞ z f ( z ) \mathrm{Res}(f,\infty)=-\lim_{z\to\infty}zf(z) Res(f,)=limzzf(z)


5.2 留数的应用——实积分的计算

5.2.1 实三角有理积分

形如
I = ∫ 0 2 π R ( cos ⁡ θ , sin ⁡ θ ) d θ I=\int_0^{2\pi}R(\cos\theta,\sin\theta)\mathrm{d}\theta I=02πR(cosθ,sinθ)dθ
的积分称为三角有理积分,其中 R ( x , y ) R(x,y) R(x,y) 是有理函数

在数学分析中我们学过,可以引入变量替换 x = tan ⁡ θ 2 x=\tan\frac{\theta}{2} x=tan2θ 计算

在复变函数中,我们可以令
z = e i θ = cos ⁡ θ + i sin ⁡ θ z=\mathrm{e}^{i\theta}=\cos\theta+i\sin\theta z=eiθ=cosθ+isinθ

cos ⁡ θ = z + 1 z 2 , sin ⁡ θ = z − 1 z 2 i , d θ = d z i z \cos\theta=\frac{z+\frac{1}{z}}{2} , \sin\theta=\frac{z-\frac{1}{z}}{2i} , \mathrm{d}\theta=\frac{\mathrm{d}z}{iz} cosθ=2z+z1sinθ=2izz1dθ=izdz

积分曲线变为单位圆 ∣ z ∣ = 1 |z|=1 z=1

I = ∫ 0 2 π R ( cos ⁡ θ , sin ⁡ θ ) d θ = ∮ ∣ z ∣ = 1 R ( z + 1 z 2 , z − 1 z 2 i ) 1 i z d z I=\int_0^{2\pi}R(\cos\theta,\sin\theta)\mathrm{d}\theta=\oint_{|z|=1}R\left(\frac{z+\frac{1}{z}}{2},\frac{z-\frac{1}{z}}{2i}\right)\frac{1}{iz}\mathrm{d}z I=02πR(cosθ,sinθ)dθ=z=1R(2z+z1,2izz1)iz1dz
化为复曲线积分

其中
f ( z ) = R ( z + 1 z 2 , z − 1 z 2 i ) 1 i z f(z)=R\left(\frac{z+\frac{1}{z}}{2},\frac{z-\frac{1}{z}}{2i}\right)\frac{1}{iz} f(z)=R(2z+z1,2izz1)iz1
是有理函数,可根据分母的零点分布运用留数定理

5.2.2 广义积分

一、形如
∫ − ∞ + ∞ P ( x ) Q ( x ) d x \int_{-\infty}^{+\infty}\frac{P(x)}{Q(x)}\mathrm{d}x +Q(x)P(x)dx
的积分

T h e o r e m \bf Theorem Theorem

P ( x ) , Q ( x ) P(x),Q(x) P(x),Q(x) 是互质多项式,若满足

(1) Q ( x ) ≠ 0 , x ∈ R Q(x)\neq 0,x\in\mathbb R Q(x)=0,xR (保证在实轴没有瑕点)

(2) ∂ Q ( x ) − ∂ P ( x ) > 1 \partial Q(x)-\partial P(x)>1 Q(x)P(x)>1 (保证积分收敛)

则广义积分收敛
∫ − ∞ + ∞ P ( x ) Q ( x ) d x = 2 π i ∑ I m z k > 0 R e s ( P ( z ) Q ( z ) , z k ) \int_{-\infty}^{+\infty}\frac{P(x)}{Q(x)}\mathrm{d}x=2\pi i\sum_{\mathrm{Im}z_k>0}\mathrm{Res}\left(\frac{P(z)}{Q(z)},z_k\right) +Q(x)P(x)dx=2πiImzk>0Res(Q(z)P(z),zk)
P r o o f \it Proof Proof
由广义积分的比较判别法容易证明积分收敛,从而原积分

I = lim ⁡ R → + ∞ ∫ − R R P ( z ) Q ( z ) d I=\lim_{R\to+\infty}\int_{-R}^{R}\frac{P(z)}{Q(z)}\mathrm{d} I=R+limRRQ(z)P(z)d

z z z如图,在复平面上添加围道 Γ R \Gamma_R ΓR ,则由留数定理有
∫ − R + R P ( z ) Q ( z ) d z + ∫ Γ R P ( z ) Q ( z ) d z = 2 π i ∑ I m z k > 0 , ∣ z k ∣ < R R e s ( P ( z ) Q ( z ) , z k ) \int_{-R}^{+R}\frac{P(z)}{Q(z)}\mathrm{d}z +\int_{\Gamma_R}\frac{P(z)}{Q(z)}\mathrm{d}z =2\pi i\sum_{\mathrm{Im}z_k>0,|z_k|<R}\mathrm{Res}\left(\frac{P(z)}{Q(z)},z_k\right) R+RQ(z)P(z)dz+ΓRQ(z)P(z)dz=2πiImzk>0,zk<RRes(Q(z)P(z),zk)

由于 ∂ Q ( x ) − ∂ P ( x ) > 1 \partial Q(x)-\partial P(x)>1 Q(x)P(x)>1 ,存在 M > 0 , δ > 0 M>0,\delta>0 M>0,δ>0 使得
∣ z ∣ |z| z 充分大时,有
∣ P ( z ) Q ( z ) ∣ ≤ M ∣ z ∣ 1 + δ \left|\frac{P(z)}{Q(z)}\right|\leq\frac{M}{|z|^{1+\delta}} Q(z)P(z) z1+δM
于是
lim ⁡ R → + ∞ ∫ Γ R P ( z ) Q ( z ) d z ≤ lim ⁡ R → + ∞ M π R δ = 0 \lim_{R\to+\infty}\int_{\Gamma_R}\frac{P(z)}{Q(z)}\mathrm{d}z\leq \lim_{R\to+\infty}\frac{M\pi}{R^{\delta}}=0 R+limΓRQ(z)P(z)dzR+limRδMπ=0

lim ⁡ R → + ∞ ∫ Γ R P ( z ) Q ( z ) d z = 0 \lim_{R\to+\infty}\int_{\Gamma_R}\frac{P(z)}{Q(z)}\mathrm{d}z=0 R+limΓRQ(z)P(z)dz=0

从而 ∫ − ∞ + ∞ P ( x ) Q ( x ) d x = 2 π i ∑ I m z k > 0 R e s ( P ( z ) Q ( z ) , z k ) 从而 \int_{-\infty}^{+\infty}\frac{P(x)}{Q(x)}\mathrm{d}x=2\pi i\sum_{\mathrm{Im}z_k>0}\mathrm{Res}\left(\frac{P(z)}{Q(z)},z_k\right) 从而+Q(x)P(x)dx=2πiImzk>0Res(Q(z)P(z),zk)

二、形如
∫ 0 + ∞ P ( x n ) Q ( x n ) d x ( n ≥ 2 ) \int_{0}^{+\infty}\frac{P(x^n)}{Q(x^n)}\mathrm{d}x(n\geq2) 0+Q(xn)P(xn)dx(n2)
的积分

T h e o r e m \bf Theorem Theorem

P ( x ) , Q ( x ) P(x),Q(x) P(x),Q(x) 是互质多项式,若满足

(1) Q ( x ) ≠ 0 , ∀ x ≥ 0 Q(x)\neq 0,\forall x\geq0 Q(x)=0,x0 (保证没有瑕点)

(2) ∂ Q ( x ) − ∂ P ( x ) > 0 \partial Q(x)-\partial P(x)>0 Q(x)P(x)>0 (保证积分收敛)

则广义积分收敛
∫ − ∞ + ∞ P ( x n ) Q ( x n ) d x = 2 π i 1 − e 2 π i / n ∑ z k ∈ Z R e s ( P ( z n ) Q ( z n ) , z k ) , n ≥ 2 \int_{-\infty}^{+\infty}\frac{P(x^n)}{Q(x^n)}\mathrm{d}x =\frac{2\pi i}{1-\mathrm e^{2\pi i/n}}\sum_{z_k\in Z}\mathrm{Res}\left(\frac{P(z^n)}{Q(z^n)},z_k\right) , n\geq 2 +Q(xn)P(xn)dx=1e2πi/n2πizkZRes(Q(zn)P(zn),zk)n2
其中 Z Z Z Q ( z n ) Q(z^n) Q(zn) 在角形区域 D : 0 < arg ⁡ z < 2 π n D:0<\arg z<\frac{2\pi}{n} D:0<argz<n2π 内所有零点构成的集合

三、形如
∫ − ∞ + ∞ P ( x ) Q ( x ) e i m x d x ( m > 0 ) \int_{-\infty}^{+\infty}\frac{P(x)}{Q(x)}\mathrm{e}^{imx}\mathrm{d}x(m>0) +Q(x)P(x)eimxdx(m>0)
的积分

L e m m a \bf Lemma Lemma(Jordan引理)

f ( z ) f(z) f(z) 在弧形闭区域
D : { 0 ≤ θ 1 ≤ arg ⁡ z ≤ θ 2 ≤ π 0 ≤ r 0 ≤ ∣ z ∣ < + ∞ D: \begin{cases} 0\leq\theta_1\leq\arg z\leq\theta_2\leq\pi\\[1ex] 0\leq r_0\leq |z|<+\infty \end{cases} D:{0θ1argzθ2π0r0z<+
上连续

Γ R \Gamma_R ΓR 是以 0 为圆形, R 为半径,从 \theta_1 到 \theta_2 的圆弧


lim ⁡ z → ∞ , z ∈ D f ( z ) = 0 ,则 lim ⁡ R → + ∞ ∫ Γ R f ( z ) e i m z d z = 0 , m > 0 \lim_{z\to\infty,z\in D}f(z)=0 ,则 \lim_{R\to+\infty}\int_{\Gamma_R}f(z)\mathrm{e}^{imz}\mathrm{d}z=0 , m>0 z,zDlimf(z)=0,则R+limΓRf(z)eimzdz=0m>0
T h e o r e m \bf Theorem Theorem

P ( x ) , Q ( x ) P(x),Q(x) P(x),Q(x) 是互质多项式,若满足

(1) Q ( x ) ≠ 0 , x ∈ R Q(x)\neq 0,x\in\mathbb R Q(x)=0,xR (保证在实轴没有瑕点)

(2) ∂ Q ( x ) − ∂ P ( x ) > 0 \partial Q(x)-\partial P(x)>0 Q(x)P(x)>0 (保证积分收敛)

则广义积分收敛
∫ − ∞ + ∞ P ( x ) Q ( x ) e i m x d x = 2 π i ∑ I m z k > 0 R e s ( P ( z ) Q ( z ) e i m z , z k ) , m > 0 \int_{-\infty}^{+\infty}\frac{P(x)}{Q(x)}\mathrm{e}^{imx}\mathrm{d}x =2\pi i\sum_{\mathrm{Im}z_k>0}\mathrm{Res}\left(\frac{P(z)}{Q(z)}\mathrm{e}^{imz},z_k\right) , m>0 +Q(x)P(x)eimxdx=2πiImzk>0Res(Q(z)P(z)eimz,zk)m>0
P r o o f \it Proof Proof
∫ − ∞ + ∞ P ( x ) Q ( x ) e i m x d x = ∫ − ∞ + ∞ P ( x ) Q ( x ) cos ⁡ ( m x ) d x + i ∫ − ∞ + ∞ P ( x ) Q ( x ) sin ⁡ ( m x ) d x \int_{-\infty}^{+\infty}\frac{P(x)}{Q(x)}\mathrm{e}^{imx}\mathrm{d}x =\int_{-\infty}^{+\infty}\frac{P(x)}{Q(x)}\cos(mx)\mathrm{d}x +i\int_{-\infty}^{+\infty}\frac{P(x)}{Q(x)}\sin(mx)\mathrm{d}x +Q(x)P(x)eimxdx=+Q(x)P(x)cos(mx)dx+i+Q(x)P(x)sin(mx)dx
由Dirichlet判别法容易证明积分收敛,从而原积分
I = lim ⁡ R → + ∞ ∫ − R R P ( z ) Q ( z ) e i m z d z I=\lim_{R\to+\infty}\int_{-R}^{R}\frac{P(z)}{Q(z)}\mathrm{e}^{imz}\mathrm{d}z I=R+limRRQ(z)P(z)eimzdz
如图,在复平面上添加围道 Γ R \Gamma_R ΓR ,则由留数定理有
∫ − R + R P ( z ) Q ( z ) e i m z d z + ∫ Γ R P ( z ) Q ( z ) e i m z d z = 2 π i ∑ I m z k > 0 , ∣ z k ∣ < R R e s ( P ( z ) Q ( z ) e i m z , z k ) \int_{-R}^{+R}\frac{P(z)}{Q(z)}\mathrm{e}^{imz}\mathrm{d}z +\int_{\Gamma_R}\frac{P(z)}{Q(z)}\mathrm{e}^{imz}\mathrm{d}z =2\pi i\sum_{\mathrm{Im}z_k>0,|z_k|<R}\mathrm{Res}\left(\frac{P(z)}{Q(z)}\mathrm{e}^{imz},z_k\right) R+RQ(z)P(z)eimzdz+ΓRQ(z)P(z)eimzdz=2πiImzk>0,zk<RRes(Q(z)P(z)eimz,zk)
由于 ∂ Q ( x ) − ∂ P ( x ) > 0 \partial Q(x)-\partial P(x)>0 Q(x)P(x)>0,由Jordan引理知
lim ⁡ R → + ∞ ∫ Γ R P ( z ) Q ( z ) e i m z d z = 0 \lim_{R\to+\infty}\int_{\Gamma_R}\frac{P(z)}{Q(z)}\mathrm{e}^{imz}\mathrm{d}z=0 R+limΓRQ(z)P(z)eimzdz=0
从而
∫ − ∞ + ∞ P ( x ) Q ( x ) e i m x d x = 2 π i ∑ I m z k > 0 R e s ( P ( z ) Q ( z ) e i m z , z k ) \int_{-\infty}^{+\infty}\frac{P(x)}{Q(x)}\mathrm{e}^{imx}\mathrm{d}x =2\pi i\sum_{\mathrm{Im}z_k>0}\mathrm{Res}\left(\frac{P(z)}{Q(z)}\mathrm{e}^{imz},z_k\right) +Q(x)P(x)eimxdx=2πiImzk>0Res(Q(z)P(z)eimz,zk)

四、有瑕点的广义积分

e . g . \bf e.g. e.g.
∫ 0 + ∞ sin ⁡ x x d x \int_0^{+\infty}\frac{\sin x}{x}\mathrm{d}x 0+xsinxdx

s o l v e \it solve solve
∫ 0 + ∞ sin ⁡ x x d x = ∫ 0 1 sin ⁡ x x d x + ∫ 1 + ∞ sin ⁡ x x d x \int_0^{+\infty}\frac{\sin x}{x}\mathrm{d}x=\int_0^1\frac{\sin x}{x}\mathrm{d}x+\int_1^{+\infty}\frac{\sin x}{x}\mathrm{d}x 0+xsinxdx=01xsinxdx+1+xsinxdx
两部分都收敛,从而原积分收敛
∫ 0 + ∞ sin ⁡ x x d x = 1 2 i ∫ − ∞ + ∞ i sin ⁡ x x d x = 1 2 i lim ⁡ ε → 0 lim ⁡ R → + ∞ ∫ ε < ∣ x ∣ < R i sin ⁡ x x d x \int_0^{+\infty}\frac{\sin x}{x}\mathrm{d}x =\frac{1}{2i}\int_{-\infty}^{+\infty}\frac{i\sin x}{x}\mathrm{d}x =\frac{1}{2i} \lim_{\varepsilon\to0}\lim_{R\to+\infty} \int_{\varepsilon<|x|<R}\frac{i\sin x}{x}\mathrm{d}x 0+xsinxdx=2i1+xisinxdx=2i1ε0limR+limε<x<Rxisinxdx

= 1 2 i lim ⁡ ε → 0 lim ⁡ R → + ∞ ( ∫ ε < ∣ x ∣ < R i sin ⁡ x x d x + ∫ ε < ∣ x ∣ < R cos ⁡ x x d x ) =\frac{1}{2i} \lim_{\varepsilon\to0}\lim_{R\to+\infty} \left( \int_{\varepsilon<|x|<R}\frac{i\sin x}{x}\mathrm{d}x +\int_{\varepsilon<|x|<R}\frac{\cos x}{x}\mathrm{d}x \right) =2i1ε0limR+lim(ε<x<Rxisinxdx+ε<x<Rxcosxdx)

= 1 2 i lim ⁡ ε → 0 lim ⁡ R → + ∞ ∫ ε < ∣ x ∣ < R e i x x d x = 1 2 i lim ⁡ ε → 0 lim ⁡ R → + ∞ ∫ ε < ∣ z ∣ < R e i z z d z =\frac{1}{2i} \lim_{\varepsilon\to0}\lim_{R\to+\infty} \int_{\varepsilon<|x|<R}\frac{\mathrm{e}^{ix}}{x}\mathrm{d}x =\frac{1}{2i} \lim_{\varepsilon\to0}\lim_{R\to+\infty} \int_{\varepsilon<|z|<R}\frac{\mathrm{e}^{iz}}{z}\mathrm{d}z =2i1ε0limR+limε<x<Rxeixdx=2i1ε0limR+limε<z<Rzeizdz

如图添加围道 Γ R \Gamma_R ΓR Γ ε \Gamma_\varepsilon Γε ,则由Cauchy积分定理
∫ ε < ∣ z ∣ < R e i z z d z + ∫ Γ R e i z z d z + ∫ Γ ε e i z z d z = 0 \int_{\varepsilon<|z|<R}\frac{\mathrm{e}^{iz}}{z}\mathrm{d}z +\int_{\Gamma_R}\frac{\mathrm{e}^{iz}}{z}\mathrm{d}z +\int_{\Gamma_\varepsilon}\frac{\mathrm{e}^{iz}}{z}\mathrm{d}z=0 ε<z<Rzeizdz+ΓRzeizdz+Γεzeizdz=0
现在我们分别求后面两项的极限
首先由Jordan引理知
∫ Γ R e i z z d z → 0 \int_{\Gamma_R}\frac{\mathrm{e}^{iz}}{z}\mathrm{d}z\to0 ΓRzeizdz0

而由Laurent展式知
e i z z = 1 z + h ( z ) \frac{\mathrm{e}^{iz}}{z}=\frac{1}{z}+h(z) zeiz=z1+h(z)
,其中 h ( z ) h(z) h(z) z = 0 z=0 z=0解析
从而在 z=0 局部有界 ∣ h ( z ) ∣ ≤ M |h(z)|\leq M h(z)M
因此
∫ Γ ε e i z z d z = ∫ Γ ε 1 z d z + ∫ Γ ε h ( z ) d z = − π i + ∫ Γ ε h ( z ) d z \int_{\Gamma_\varepsilon}\frac{\mathrm{e}^{iz}}{z}\mathrm{d}z =\int_{\Gamma_\varepsilon}\frac{1}{z}\mathrm{d}z +\int_{\Gamma_\varepsilon}h(z)\mathrm{d}z =-\pi i +\int_{\Gamma_\varepsilon}h(z)\mathrm{d}z Γεzeizdz=Γεz1dz+Γεh(z)dz=πi+Γεh(z)dz

∣ ∫ Γ ε h ( z ) d z ∣ ≤ π ε M → 0 ,从而 ∫ Γ ε e i z z d z → − π i \left|\int_{\Gamma_\varepsilon}h(z)\mathrm{d}z\right|\leq\pi\varepsilon M\to 0 ,从而 \int_{\Gamma_\varepsilon}\frac{\mathrm{e}^{iz}}{z}\mathrm{d}z\to -\pi i Γεh(z)dz πεM0,从而Γεzeizdzπi
综上
I = 1 2 i ⋅ π i = π 2 I=\frac{1}{2i}\cdot\pi i=\frac{\pi}{2} I=2i1πi=2π

5.2.3 利用多值函数求实积分


5.3 留数的应用——解析函数零点的个数与分布

5.3.1 辐角原理

回顾:解析函数的零点具有孤立性

f f f 在有界区域 D D D内解析,连续到边界,并且 ∀ z ∈ ∂ D , f ( z ) ≠ 0 \forall z\in\partial D,f(z)\neq0 zD,f(z)=0

f f f D D D不恒等于零,则 f f f D D D内个零点个数至多是有限个

问:零点个数(算重数)与 f f f有什么关系?

对于多项式
P n ( z ) = a n z n + ⋯ + a 1 z + a 0 = a n ( z − z 1 ) r 1 … ( z − z s ) r s P_n(z)=a_nz^n+\dots+a_1z+a_0=a_n(z-z_1)^{r_1}\dots(z-z_s)^{r_s} Pn(z)=anzn++a1z+a0=an(zz1)r1(zzs)rs
设其有零点 z 1 , … , z s z_1,\dots,z_s z1,,zs,重数分别为 r 1 , … , r s r_1,\dots,r_s r1,,rs,则 r 1 + ⋯ + r s = n r_1+\dots+r_s=n r1++rs=n


P n ′ ( z ) P n ( z ) = r 1 z − z 1 + r 2 z − z 2 + ⋯ + r s z − z s \frac{P'_n(z)}{P_n(z)}=\frac{r_1}{z-z_1}+\frac{r_2}{z-z_2}+\dots+\frac{r_s}{z-z_s} Pn(z)Pn(z)=zz1r1+zz2r2++zzsrs
对于充分大的 R R R,使得 ∣ z k ∣ < R |z_k|<R zk<R对于所有零点成立,则

1 2 π i ∮ C R ( 0 ) P n ′ ( z ) P n ( z ) d z = r 1 + r 2 + ⋯ + r s = n \frac{1}{2\pi i}\oint_{C_R(0)}\frac{P'_n(z)}{P_n(z)}\mathrm{d}z=r_1+r_2+\dots+r_s=n 2πi1CR(0)Pn(z)Pn(z)dz=r1+r2++rs=n
下面我们将这个结果推广到一般的解析函数

L e m m a \bf Lemma Lemma

f ( z ) f(z) f(z) z k z_k zk解析,且 z k z_k zk f ( z ) f(z) f(z) r k r_k rk阶零点

z k z_k zk f ′ ( z ) f ( z ) \frac{f'(z)}{f(z)} f(z)f(z)的一阶极点,且
R e s ( f ′ ( z ) f ( z ) , z k ) = r k \mathrm{Res}\left(\frac{f'(z)}{f(z)},z_k\right)=r_k Res(f(z)f(z),zk)=rk
P r o o f \it Proof Proof
由于 z k z_k zk f ( z ) f(z) f(z) r k r_k rk阶零点,从而 f ( z k ) = ⋯ = f ( r k − 1 ) ( z k ) = 0 f(z_k)=\dots=f^{(r_k-1)}(z_k)=0 f(zk)==f(rk1)(zk)=0
f ( z ) f(z) f(z) z k z_k zk的Taylor展式为
f ( z ) = ∑ n = r k + ∞ a n ( z − z k ) n = ( z − z k ) r k φ ( z ) f(z)=\sum_{n=r_k}^{+\infty}a_n(z-z_k)^n=(z-z_k)^{r_k}\varphi(z) f(z)=n=rk+an(zzk)n=(zzk)rkφ(z)
其中 φ ( z ) \varphi(z) φ(z) z k z_k zk解析且 φ ( z k ) ≠ 0 \varphi(z_k)\neq 0 φ(zk)=0
从而
KaTeX parse error: Can't use function '$' in math mode at position 62: …r_k}\varphi'(z)$̲

f ′ ( z ) f ( z ) = r k z − z k + φ ′ ( z ) φ ( z ) \frac{f'(z)}{f(z)}=\frac{r_k}{z-z_k}+\frac{\varphi'(z)}{\varphi(z)} f(z)f(z)=zzkrk+φ(z)φ(z)
,积分求得留数
R e s ( f ′ ( z ) f ( z ) , z k ) = r k \mathrm{Res}\left(\frac{f'(z)}{f(z)},z_k\right)=r_k Res(f(z)f(z),zk)=rk
T h e o r e m \bf Theorem Theorem(辐角原理)

设 D 是有界区域, ∂ D \partial D D 是有限条分段光滑的简单闭合曲线

f ( z ) f(z) f(z) D D D 解析,在 D ‾ \overline D D连续,且 f ( z ) 在 ∂ D f(z) 在 \partial D f(z)D 上无零点

f ( z ) f(z) f(z) D D D 内的零点个数为 N N N (算重数),则
N = 1 2 π i ∮ ∂ D f ′ ( z ) f ( z ) d z N=\frac{1}{2\pi i}\oint_{\partial D}\frac{f'(z)}{f(z)}\mathrm{d}z N=2πi1Df(z)f(z)dz
P r o o f \it Proof Proof
(1) 若 f f f D D D内无零点,则 f ′ ( z ) f ( z ) \frac{f'(z)}{f(z)} f(z)f(z) D D D解析,在 D ‾ \overline D D连续,由CIT知上述积分为零
(2) 设 f f f D D D内有零点 z 1 , … , z s z_1,\dots,z_s z1,,zs,重数为 r 1 , … , r s r_1,\dots,r_s r1,,rs,设 N = r 1 + ⋯ + r s N=r_1+\dots+r_s N=r1++rs
由引理, z 1 , … , z s z_1,\dots,z_s z1,,zs f ′ ( z ) f ( z ) \frac{f'(z)}{f(z)} f(z)f(z)的一阶极点,且
R e s ( f ′ ( z ) f ( z ) , z k ) = r k \mathrm{Res}\left(\frac{f'(z)}{f(z)},z_k\right)=r_k Res(f(z)f(z),zk)=rk
从而由留数定理
1 2 π i ∮ ∂ D f ′ ( z ) f ( z ) d z = r 1 + ⋯ + r s = N \frac{1}{2\pi i}\oint_{\partial D}\frac{f'(z)}{f(z)}\mathrm{d}z=r_1+\dots+r_s=N 2πi1Df(z)f(z)dz=r1++rs=N
R e m a r k \bf Remark Remark

辐角原理的几何解释如下

N = 1 2 π i ∮ ∂ D f ′ ( z ) f ( z ) d z = 1 2 π i ∮ ∂ D d f ( z ) f ( z ) N=\frac{1}{2\pi i}\oint_{\partial D}\frac{f'(z)}{f(z)}\mathrm{d}z =\frac{1}{2\pi i}\oint_{\partial D}\frac{\mathrm{d}f(z)}{f(z)} N=2πi1Df(z)f(z)dz=2πi1Df(z)df(z)

ω = f ( z ) ,则 N = 1 2 π i ∮ f ( ∂ D ) d ω ω \omega=f(z) ,则 N=\frac{1}{2\pi i}\oint_{f(\partial D)}\frac{\mathrm{d}\omega}{\omega} ω=f(z),则N=2πi1f(D)ωdω
等于绕原点的圈数

z z z ∂ D \partial D D 上走, f ( z ) f(z) f(z) f ( ∂ D ) f(\partial D) f(D) 上走,即
N = 1 2 π Δ ∂ D A r g f ( z ) N=\frac{1}{2\pi}\Delta_{\partial D}\mathrm{Arg}f(z) N=2π1ΔDArgf(z)

e . g . f ( z ) = z ( z − 1 ) ( z − 2 ) \bf e.g. f(z)=z(z-1)(z-2) e.g.f(z)=z(z1)(z2)

A r g f ( z ) = A r g z + A r g ( z − 1 ) + A r g ( z − 2 ) \mathrm{Arg}f(z)=\mathrm{Arg}z+\mathrm{Arg}(z-1)+\mathrm{Arg}(z-2) Argf(z)=Argz+Arg(z1)+Arg(z2)
当 R 充分大时,沿 ∣ z ∣ = R |z|=R z=R 逆时针走,
1 2 π Δ ∂ D A r g f ( z ) = 6 π 2 π = 3 = N \frac{1}{2\pi}\Delta_{\partial D}\mathrm{Arg}f(z)=\frac{6\pi}{2\pi}=3=N 2π1ΔDArgf(z)=2π6π=3=N

辐角原理还可以推广到亚纯函数的情形,证明思路类似

L e m m a \bf Lemma Lemma

z 0 z_0 z0 f ( z ) f(z) f(z) m m m阶极点,则 z 0 z_0 z0 f ′ ( z ) f ( z ) \frac{f'(z)}{f(z)} f(z)f(z)的一阶极点,且 R e s ( f ′ ( z ) f ( z ) , z 0 ) = − m \mathrm{Res}\left(\frac{f'(z)}{f(z)},z_0\right)=-m Res(f(z)f(z),z0)=m

T h e o r e m \bf Theorem Theorem(辐角原理)

D D D是有界区域, ∂ D \partial D D是有限条分段光滑的简单闭合曲线

f ( z ) f(z) f(z) D D D上的亚纯函数,且 f ( z ) f(z) f(z) ∂ D \partial D D上无零点并解析

f ( z ) f(z) f(z) D D D内的零点和极点个数分别为 N N N P P P(算重数)


1 2 π i ∮ ∂ D f ′ ( z ) f ( z ) d z = N − P \frac{1}{2\pi i}\oint_{\partial D}\frac{f'(z)}{f(z)}\mathrm{d}z=N-P 2πi1Df(z)f(z)dz=NP

作为辐角原理的应用,我们还有如下定理

T h e o r e m ( H u r w i t z ) \bf Theorem(Hurwitz) Theorem(Hurwitz)

{ f n ( z ) } \{f_n(z)\} {fn(z)} 是在区域 D D D 内内闭一致收敛于 f ( z ) f(z) f(z) 的解析函数列

且所有 f n ( z ) f_n(z) fn(z) D D D内无零点,则 f ( z ) f(z) f(z) D D D内或者恒等于零,或者没有零点

P r o o f \it Proof Proof
假设 f ( z ) f(z) f(z) D D D内有零点 z 0 z_0 z0,且 f ( z ) f(z) f(z) D D D内不恒等于零
则由零点的孤立性, ∃ B ‾ ( z 0 , δ ) ⊂ D \exists\overline B(z_0,\delta)\subset D B(z0,δ)D使得 f ( z ) f(z) f(z)只有零点 z 0 z_0 z0,但由辐角原理
N = 1 2 π i ∮ C δ ( z 0 ) f ′ ( z ) f ( z ) d z = lim ⁡ n → ∞ 1 2 π i ∮ C δ ( z 0 ) f n ′ ( z ) f n ( z ) d z = 0 N=\frac{1}{2\pi i}\oint_{C_\delta(z_0)}\frac{f'(z)}{f(z)}\mathrm{d}z =\lim_{n\to\infty}\frac{1}{2\pi i}\oint_{C_\delta(z_0)}\frac{f'_n(z)}{f_n(z)}\mathrm{d}z=0 N=2πi1Cδ(z0)f(z)f(z)dz=nlim2πi1Cδ(z0)fn(z)fn(z)dz=0
矛盾

5.3.2 Rouche定理

T h e o r e m \bf Theorem Theorem(Rouche,鲁歇定理)

设 D 是有界区域, ∂ D \partial D D是有限条分段光滑的简单闭合曲线, f 和 g 在 D 解析, D ‾ \overline D D连续

∀ z ∈ ∂ D , ∣ g ( z ) ∣ < ∣ f ( z ) ∣ \forall z\in\partial D , |g(z)|<|f(z)| zDg(z)<f(z),则 f + g f+g f+g f f f D D D有相同的零点个数(算重数)

等价:若 ∀ z ∈ ∂ D , ∣ f ( z ) − g ( z ) ∣ < ∣ f ( z ) ∣ o r ∣ g ( z ) ∣ \forall z\in\partial D , |f(z)-g(z)|<|f(z)| or |g(z)| zDf(z)g(z)<f(z)org(z) f f f g g g D D D 零点数相同

P r o o f \it Proof Proof
因为 ∀ z ∈ ∂ D , ∣ f ( z ) ∣ > ∣ g ( z ) ∣ ≥ 0 \forall z\in\partial D , |f(z)|>|g(z)|\geq0 zDf(z)>g(z)0,所以 f f f ∂ D \partial D D上无零点
由解析函数零点的孤立性知, f f f D D D内至多有有限个零点,设为 N 1 N_1 N1个(算重数)
同理由于
∀ z ∈ ∂ D , ∣ f ( z ) + g ( z ) ∣ ≥ ∣ f ( z ) ∣ − ∣ g ( z ) ∣ > 0 \forall z\in\partial D , |f(z)+g(z)|\geq|f(z)|-|g(z)|>0 zDf(z)+g(z)f(z)g(z)>0
所以 f + g f+g f+g D D D 内至多有有限个零点,设为 N 2 N_2 N2 个(算重数)
由辐角原理
N 1 = 1 2 π Δ ∂ D A r g f ( z ) N 2 = 1 2 π Δ ∂ D A r g ( f ( z ) + g ( z ) ) = 1 2 π Δ ∂ D A r g [ f ( z ) ( 1 + g ( z ) f ( z ) ) ] = 1 2 π Δ ∂ D A r g f ( z ) + 1 2 π Δ ∂ D A r g ( 1 + g ( z ) f ( z ) ) N_1=\frac{1}{2\pi}\Delta_{\partial D}\mathrm{Arg}f(z) \begin{align} N_2&=\frac{1}{2\pi}\Delta_{\partial D}\mathrm{Arg}(f(z)+g(z))\\[1ex] &=\frac{1}{2\pi}\Delta_{\partial D}\mathrm{Arg}\left[f(z)\left(1+\frac{g(z)}{f(z)}\right)\right]\\[1ex] &=\frac{1}{2\pi}\Delta_{\partial D}\mathrm{Arg}f(z) +\frac{1}{2\pi}\Delta_{\partial D}\mathrm{Arg}\left(1+\frac{g(z)}{f(z)}\right)\\[1ex] \end{align} N1=2π1ΔDArgf(z)N2=2π1ΔDArg(f(z)+g(z))=2π1ΔDArg[f(z)(1+f(z)g(z))]=2π1ΔDArgf(z)+2π1ΔDArg(1+f(z)g(z))
由于
∀ z ∈ ∂ D , ∣ g ( z ) f ( z ) ∣ < 1 \forall z\in\partial D , \left|\frac{g(z)}{f(z)}\right|<1 zD f(z)g(z) <1
z z z 沿 ∂ D \partial D D 变动时, 1 + g ( z ) f ( z ) 1+\frac{g(z)}{f(z)} 1+f(z)g(z) 不可能绕原点变动

1 2 π Δ ∂ D A r g ( 1 + g ( z ) f ( z ) ) = 0 \frac{1}{2\pi}\Delta_{\partial D}\mathrm{Arg}\left(1+\frac{g(z)}{f(z)}\right)=0 2π1ΔDArg(1+f(z)g(z))=0
N 1 = N 2 N_1=N_2 N1=N2

R e m a r k \bf Remark Remark

Rouche定理可以用来估计零点的分布情况

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值