复变函数 | 留数
5.1 一般理论
5.1.1 留数(Residue)的定义及留数定理
D e f i n i t i o n \bf Definition Definition(留数)
- 设 z 0 ∈ C z_0\in\mathbb C z0∈C是 f ( z ) f(z) f(z)的孤立奇点,即 ∃ r > 0 \exists r>0 ∃r>0使得 f ( z ) f(z) f(z)在 0 < ∣ z − z 0 ∣ < r 0<|z-z_0|<r 0<∣z−z0∣<r解析
∀ 0 < ρ < r , 1 2 π i ∮ C ρ ( z 0 ) f ( z ) d z \forall 0<\rho<r ,\frac{1}{2\pi i}\oint_{C_\rho(z_0)}f(z)\mathrm{d}z ∀0<ρ<r,2πi1∮Cρ(z0)f(z)dz
- 称为 f ( z ) f(z) f(z) 在 z 0 z_0 z0 的留数,记作 R e s ( f , z 0 ) \mathrm{Res}(f,z_0) Res(f,z0)
若
∞
\infty
∞是
f
(
z
)
f(z)
f(z)的孤立奇点,即
∃
R
>
0
\exists R>0
∃R>0使得
f
(
z
)
f(z)
f(z)在
∣
z
∣
>
R
|z|>R
∣z∣>R解析
∀
ρ
>
R
,
1
2
π
i
∮
C
ρ
(
0
)
f
(
z
)
d
z
\forall \rho>R ,\frac{1}{2\pi i}\oint_{C_\rho(0)}f(z)\mathrm{d}z
∀ρ>R,2πi1∮Cρ(0)f(z)dz
称为
f
(
z
)
f(z)
f(z)在
∞
\infty
∞的留数,记作
R
e
s
(
f
,
∞
)
\mathrm{Res}(f,\infty)
Res(f,∞)
R e m a r k \bf Remark Remark
(1) 由Cauchy积分定理,留数与 ρ \rho ρ的选取无关
(2) 积分的方向取正向,即有限点处的留数取逆时针,无穷远点处的留数取顺时针
由Cauchy积分定理,容易得到下面的定理
T h e o r e m \bf Theorem Theorem(留数定理)
(1) 设 D D D 是由有限条分段光滑简单闭合曲线 C C C 围成的有界区域, z 1 , … , z s ∈ D z_1,\dots,z_s\in D z1,…,zs∈D
若
f
(
z
)
f(z)
f(z)在
D
\
{
z
1
,
z
2
,
…
,
z
s
}
D\backslash\{z_1,z_2,\dots,z_s\}
D\{z1,z2,…,zs}解析,且在
D
‾
\
{
z
1
,
z
2
,
…
,
z
s
}
\overline D\backslash\{z_1,z_2,\dots,z_s\}
D\{z1,z2,…,zs}连续则
1
2
π
i
∮
C
f
(
z
)
d
z
=
∑
k
=
1
s
R
e
s
(
f
,
z
k
)
\frac{1}{2\pi i}\oint_Cf(z)\mathrm{d}z=\sum_{k=1}^s\mathrm{Res}(f,z_k)
2πi1∮Cf(z)dz=k=1∑sRes(f,zk)
(2) 若
f
(
z
)
f(z)
f(z) 在
C
\
{
z
1
,
z
2
,
…
,
z
s
}
\mathbb C\backslash\{z_1,z_2,\dots,z_s\}
C\{z1,z2,…,zs} 解析,则
∑
k
=
1
s
R
e
s
(
f
,
z
k
)
+
R
e
s
(
f
,
∞
)
=
0
\sum_{k=1}^s\mathrm{Res}(f,z_k)+\mathrm{Res}(f,\infty)=0
k=1∑sRes(f,zk)+Res(f,∞)=0
5.1.2 留数的计算
设 z 0 ∈ C z_0\in\mathbb C z0∈C 是 f ( z ) f(z) f(z) 的孤立奇点,即 ∃ r > 0 \exists r>0 ∃r>0 使得 f ( z ) f(z) f(z) 在 0 < ∣ z − z 0 ∣ < r 0<|z-z_0|<r 0<∣z−z0∣<r 解析
从而有Laurent展式
f
(
z
)
=
∑
n
=
−
∞
+
∞
β
n
(
z
−
z
0
)
n
,
∀
0
<
ρ
<
r
f(z)=\sum_{n=-\infty}^{+\infty}\beta_n(z-z_0)^n , \forall 0<\rho<r
f(z)=n=−∞∑+∞βn(z−z0)n,∀0<ρ<r
它在
C
ρ
(
z
0
)
C_\rho(z_0)
Cρ(z0)(逆时针)一致收敛
则
R
e
s
(
f
,
z
0
)
=
1
2
π
i
∮
C
ρ
(
z
0
)
∑
n
=
−
∞
+
∞
β
n
(
z
−
z
0
)
n
d
z
=
1
2
π
i
∑
n
=
−
∞
+
∞
∮
C
ρ
(
z
0
)
β
n
(
z
−
z
0
)
n
d
z
\mathrm{Res}(f,z_0) =\frac{1}{2\pi i}\oint_{C_\rho(z_0)}\sum_{n=-\infty}^{+\infty}\beta_n(z-z_0)^n\mathrm{d}z =\frac{1}{2\pi i}\sum_{n=-\infty}^{+\infty}\oint_{C_\rho(z_0)}\beta_n(z-z_0)^n\mathrm{d}z
Res(f,z0)=2πi1∮Cρ(z0)n=−∞∑+∞βn(z−z0)ndz=2πi1n=−∞∑+∞∮Cρ(z0)βn(z−z0)ndz
注意到只有当
n
=
−
1
n=-1
n=−1 时上面的积分才非零,从而
R
e
s
(
f
,
z
0
)
=
β
−
1
\mathrm{Res}(f,z_0)=\beta_{-1}
Res(f,z0)=β−1
(1) 当 z 0 z_0 z0 是可去奇点, R e s ( f , z 0 ) = 0 \mathrm{Res}(f,z_0)=0 Res(f,z0)=0
(2) 当
z
0
z_0
z0 是
m
m
m 阶极点,
f
(
z
)
=
∑
n
=
−
m
+
∞
β
n
(
z
−
z
0
)
n
=
φ
(
z
)
(
z
−
z
0
)
m
f(z)=\sum_{n=-m}^{+\infty}\beta_n(z-z_0)^n=\frac{\varphi(z)}{(z-z_0)^m}
f(z)=n=−m∑+∞βn(z−z0)n=(z−z0)mφ(z)
其中
φ
(
z
)
=
β
−
m
+
β
−
m
+
1
(
z
−
z
0
)
+
…
\varphi(z)=\beta_{-m}+\beta_{-m+1}(z-z_0)+\dots
φ(z)=β−m+β−m+1(z−z0)+… 在
∣
z
−
z
0
∣
<
r
|z-z_0|<r
∣z−z0∣<r 解析,且
φ
(
z
0
)
=
β
−
m
≠
0
\varphi(z_0)=\beta_{-m}\neq0
φ(z0)=β−m=0
从而
β
−
1
=
φ
(
m
−
1
)
(
z
0
)
(
m
−
1
)
!
\beta_{-1}=\frac{\varphi^{(m-1)}(z_0)}{(m-1)!}
β−1=(m−1)!φ(m−1)(z0)
即
R
e
s
(
f
,
z
0
)
=
lim
z
→
z
0
[
f
(
z
)
(
z
−
z
0
)
m
]
(
m
−
1
)
(
m
−
1
)
!
\mathrm{Res}(f,z_0)=\lim_{z\to z_0}\frac{[f(z)(z-z_0)^m]^{(m-1)}}{(m-1)!}
Res(f,z0)=z→z0lim(m−1)![f(z)(z−z0)m](m−1)
(3) 当
z
0
z_0
z0是本性奇点,没有特别的方法,一般尝试将
f
(
z
)
f(z)
f(z)展开为Laurent展式,或按照定义计算积分
设 ∞ ∈ C \infty\in\mathbb C ∞∈C 是 f ( z ) f(z) f(z) 的孤立奇点,即 ∃ R > 0 \exists R>0 ∃R>0 使得 f ( z ) f(z) f(z) 在 ∣ z ∣ > R |z|>R ∣z∣>R 解析
从而有Laurent展式 f ( z ) = ∑ n = − ∞ + ∞ β n z n f(z)=\sum_{n=-\infty}^{+\infty}\beta_nz^n f(z)=∑n=−∞+∞βnzn , ∀ ρ > R \forall \rho>R ∀ρ>R ,它在 C ρ ( 0 ) ( 顺时针 ) C_\rho(0) (顺时针) Cρ(0)(顺时针)一致收敛
则
R
e
s
(
f
,
∞
)
=
1
2
π
i
∮
C
ρ
(
0
)
∑
n
=
−
∞
+
∞
β
n
z
n
d
z
=
1
2
π
i
∑
n
=
−
∞
+
∞
∮
C
ρ
(
0
)
β
n
z
n
d
z
\mathrm{Res}(f,\infty) =\frac{1}{2\pi i}\oint_{C_\rho(0)}\sum_{n=-\infty}^{+\infty}\beta_nz^n\mathrm{d}z =\frac{1}{2\pi i}\sum_{n=-\infty}^{+\infty}\oint_{C_\rho(0)}\beta_nz^n\mathrm{d}z
Res(f,∞)=2πi1∮Cρ(0)n=−∞∑+∞βnzndz=2πi1n=−∞∑+∞∮Cρ(0)βnzndz
注意到只有当
n
=
−
1
n=-1
n=−1 时上面的积分才非零,从而
R
e
s
(
f
,
∞
)
=
−
β
−
1
\mathrm{Res}(f,\infty)=-\beta_{-1}
Res(f,∞)=−β−1
若
lim
z
→
∞
f
(
z
)
=
0
\lim_{z\to\infty}f(z)=0
limz→∞f(z)=0 ,则
f
(
z
)
=
∑
n
=
−
∞
−
1
β
n
z
n
=
β
−
1
z
+
β
−
2
z
2
+
…
f(z)=\sum_{n=-\infty}^{-1}\beta_nz^n=\frac{\beta_{-1}}{z}+\frac{\beta_{-2}}{z^2}+\dots
f(z)=n=−∞∑−1βnzn=zβ−1+z2β−2+…
于是
β
−
1
=
lim
z
→
∞
z
f
(
z
)
\beta_{-1}=\lim_{z\to\infty}zf(z)
β−1=limz→∞zf(z),即
R
e
s
(
f
,
∞
)
=
−
lim
z
→
∞
z
f
(
z
)
\mathrm{Res}(f,\infty)=-\lim_{z\to\infty}zf(z)
Res(f,∞)=−limz→∞zf(z)
5.2 留数的应用——实积分的计算
5.2.1 实三角有理积分
形如
I
=
∫
0
2
π
R
(
cos
θ
,
sin
θ
)
d
θ
I=\int_0^{2\pi}R(\cos\theta,\sin\theta)\mathrm{d}\theta
I=∫02πR(cosθ,sinθ)dθ
的积分称为三角有理积分,其中
R
(
x
,
y
)
R(x,y)
R(x,y) 是有理函数
在数学分析中我们学过,可以引入变量替换 x = tan θ 2 x=\tan\frac{\theta}{2} x=tan2θ 计算
在复变函数中,我们可以令
z
=
e
i
θ
=
cos
θ
+
i
sin
θ
z=\mathrm{e}^{i\theta}=\cos\theta+i\sin\theta
z=eiθ=cosθ+isinθ
cos θ = z + 1 z 2 , sin θ = z − 1 z 2 i , d θ = d z i z \cos\theta=\frac{z+\frac{1}{z}}{2} , \sin\theta=\frac{z-\frac{1}{z}}{2i} , \mathrm{d}\theta=\frac{\mathrm{d}z}{iz} cosθ=2z+z1,sinθ=2iz−z1,dθ=izdz
积分曲线变为单位圆 ∣ z ∣ = 1 |z|=1 ∣z∣=1
I
=
∫
0
2
π
R
(
cos
θ
,
sin
θ
)
d
θ
=
∮
∣
z
∣
=
1
R
(
z
+
1
z
2
,
z
−
1
z
2
i
)
1
i
z
d
z
I=\int_0^{2\pi}R(\cos\theta,\sin\theta)\mathrm{d}\theta=\oint_{|z|=1}R\left(\frac{z+\frac{1}{z}}{2},\frac{z-\frac{1}{z}}{2i}\right)\frac{1}{iz}\mathrm{d}z
I=∫02πR(cosθ,sinθ)dθ=∮∣z∣=1R(2z+z1,2iz−z1)iz1dz
化为复曲线积分
其中
f
(
z
)
=
R
(
z
+
1
z
2
,
z
−
1
z
2
i
)
1
i
z
f(z)=R\left(\frac{z+\frac{1}{z}}{2},\frac{z-\frac{1}{z}}{2i}\right)\frac{1}{iz}
f(z)=R(2z+z1,2iz−z1)iz1
是有理函数,可根据分母的零点分布运用留数定理
5.2.2 广义积分
一、形如
∫
−
∞
+
∞
P
(
x
)
Q
(
x
)
d
x
\int_{-\infty}^{+\infty}\frac{P(x)}{Q(x)}\mathrm{d}x
∫−∞+∞Q(x)P(x)dx
的积分
T h e o r e m \bf Theorem Theorem
P ( x ) , Q ( x ) P(x),Q(x) P(x),Q(x) 是互质多项式,若满足
(1) Q ( x ) ≠ 0 , x ∈ R Q(x)\neq 0,x\in\mathbb R Q(x)=0,x∈R (保证在实轴没有瑕点)
(2) ∂ Q ( x ) − ∂ P ( x ) > 1 \partial Q(x)-\partial P(x)>1 ∂Q(x)−∂P(x)>1 (保证积分收敛)
则广义积分收敛
∫
−
∞
+
∞
P
(
x
)
Q
(
x
)
d
x
=
2
π
i
∑
I
m
z
k
>
0
R
e
s
(
P
(
z
)
Q
(
z
)
,
z
k
)
\int_{-\infty}^{+\infty}\frac{P(x)}{Q(x)}\mathrm{d}x=2\pi i\sum_{\mathrm{Im}z_k>0}\mathrm{Res}\left(\frac{P(z)}{Q(z)},z_k\right)
∫−∞+∞Q(x)P(x)dx=2πiImzk>0∑Res(Q(z)P(z),zk)
P
r
o
o
f
\it Proof
Proof
由广义积分的比较判别法容易证明积分收敛,从而原积分
I = lim R → + ∞ ∫ − R R P ( z ) Q ( z ) d I=\lim_{R\to+\infty}\int_{-R}^{R}\frac{P(z)}{Q(z)}\mathrm{d} I=R→+∞lim∫−RRQ(z)P(z)d
z
z
z如图,在复平面上添加围道
Γ
R
\Gamma_R
ΓR ,则由留数定理有
∫
−
R
+
R
P
(
z
)
Q
(
z
)
d
z
+
∫
Γ
R
P
(
z
)
Q
(
z
)
d
z
=
2
π
i
∑
I
m
z
k
>
0
,
∣
z
k
∣
<
R
R
e
s
(
P
(
z
)
Q
(
z
)
,
z
k
)
\int_{-R}^{+R}\frac{P(z)}{Q(z)}\mathrm{d}z +\int_{\Gamma_R}\frac{P(z)}{Q(z)}\mathrm{d}z =2\pi i\sum_{\mathrm{Im}z_k>0,|z_k|<R}\mathrm{Res}\left(\frac{P(z)}{Q(z)},z_k\right)
∫−R+RQ(z)P(z)dz+∫ΓRQ(z)P(z)dz=2πiImzk>0,∣zk∣<R∑Res(Q(z)P(z),zk)
由于
∂
Q
(
x
)
−
∂
P
(
x
)
>
1
\partial Q(x)-\partial P(x)>1
∂Q(x)−∂P(x)>1 ,存在
M
>
0
,
δ
>
0
M>0,\delta>0
M>0,δ>0 使得
当
∣
z
∣
|z|
∣z∣ 充分大时,有
∣
P
(
z
)
Q
(
z
)
∣
≤
M
∣
z
∣
1
+
δ
\left|\frac{P(z)}{Q(z)}\right|\leq\frac{M}{|z|^{1+\delta}}
Q(z)P(z)
≤∣z∣1+δM
于是
lim
R
→
+
∞
∫
Γ
R
P
(
z
)
Q
(
z
)
d
z
≤
lim
R
→
+
∞
M
π
R
δ
=
0
\lim_{R\to+\infty}\int_{\Gamma_R}\frac{P(z)}{Q(z)}\mathrm{d}z\leq \lim_{R\to+\infty}\frac{M\pi}{R^{\delta}}=0
R→+∞lim∫ΓRQ(z)P(z)dz≤R→+∞limRδMπ=0
即
lim
R
→
+
∞
∫
Γ
R
P
(
z
)
Q
(
z
)
d
z
=
0
\lim_{R\to+\infty}\int_{\Gamma_R}\frac{P(z)}{Q(z)}\mathrm{d}z=0
R→+∞lim∫ΓRQ(z)P(z)dz=0
从而 ∫ − ∞ + ∞ P ( x ) Q ( x ) d x = 2 π i ∑ I m z k > 0 R e s ( P ( z ) Q ( z ) , z k ) 从而 \int_{-\infty}^{+\infty}\frac{P(x)}{Q(x)}\mathrm{d}x=2\pi i\sum_{\mathrm{Im}z_k>0}\mathrm{Res}\left(\frac{P(z)}{Q(z)},z_k\right) 从而∫−∞+∞Q(x)P(x)dx=2πiImzk>0∑Res(Q(z)P(z),zk)
二、形如
∫
0
+
∞
P
(
x
n
)
Q
(
x
n
)
d
x
(
n
≥
2
)
\int_{0}^{+\infty}\frac{P(x^n)}{Q(x^n)}\mathrm{d}x(n\geq2)
∫0+∞Q(xn)P(xn)dx(n≥2)
的积分
T h e o r e m \bf Theorem Theorem
P ( x ) , Q ( x ) P(x),Q(x) P(x),Q(x) 是互质多项式,若满足
(1) Q ( x ) ≠ 0 , ∀ x ≥ 0 Q(x)\neq 0,\forall x\geq0 Q(x)=0,∀x≥0 (保证没有瑕点)
(2) ∂ Q ( x ) − ∂ P ( x ) > 0 \partial Q(x)-\partial P(x)>0 ∂Q(x)−∂P(x)>0 (保证积分收敛)
则广义积分收敛
∫
−
∞
+
∞
P
(
x
n
)
Q
(
x
n
)
d
x
=
2
π
i
1
−
e
2
π
i
/
n
∑
z
k
∈
Z
R
e
s
(
P
(
z
n
)
Q
(
z
n
)
,
z
k
)
,
n
≥
2
\int_{-\infty}^{+\infty}\frac{P(x^n)}{Q(x^n)}\mathrm{d}x =\frac{2\pi i}{1-\mathrm e^{2\pi i/n}}\sum_{z_k\in Z}\mathrm{Res}\left(\frac{P(z^n)}{Q(z^n)},z_k\right) , n\geq 2
∫−∞+∞Q(xn)P(xn)dx=1−e2πi/n2πizk∈Z∑Res(Q(zn)P(zn),zk),n≥2
其中
Z
Z
Z 是
Q
(
z
n
)
Q(z^n)
Q(zn) 在角形区域
D
:
0
<
arg
z
<
2
π
n
D:0<\arg z<\frac{2\pi}{n}
D:0<argz<n2π 内所有零点构成的集合
三、形如
∫
−
∞
+
∞
P
(
x
)
Q
(
x
)
e
i
m
x
d
x
(
m
>
0
)
\int_{-\infty}^{+\infty}\frac{P(x)}{Q(x)}\mathrm{e}^{imx}\mathrm{d}x(m>0)
∫−∞+∞Q(x)P(x)eimxdx(m>0)
的积分
L e m m a \bf Lemma Lemma(Jordan引理)
f
(
z
)
f(z)
f(z) 在弧形闭区域
D
:
{
0
≤
θ
1
≤
arg
z
≤
θ
2
≤
π
0
≤
r
0
≤
∣
z
∣
<
+
∞
D: \begin{cases} 0\leq\theta_1\leq\arg z\leq\theta_2\leq\pi\\[1ex] 0\leq r_0\leq |z|<+\infty \end{cases}
D:{0≤θ1≤argz≤θ2≤π0≤r0≤∣z∣<+∞
上连续
Γ R \Gamma_R ΓR 是以 0 为圆形, R 为半径,从 \theta_1 到 \theta_2 的圆弧
若
lim
z
→
∞
,
z
∈
D
f
(
z
)
=
0
,则
lim
R
→
+
∞
∫
Γ
R
f
(
z
)
e
i
m
z
d
z
=
0
,
m
>
0
\lim_{z\to\infty,z\in D}f(z)=0 ,则 \lim_{R\to+\infty}\int_{\Gamma_R}f(z)\mathrm{e}^{imz}\mathrm{d}z=0 , m>0
z→∞,z∈Dlimf(z)=0,则R→+∞lim∫ΓRf(z)eimzdz=0,m>0
T
h
e
o
r
e
m
\bf Theorem
Theorem
P ( x ) , Q ( x ) P(x),Q(x) P(x),Q(x) 是互质多项式,若满足
(1) Q ( x ) ≠ 0 , x ∈ R Q(x)\neq 0,x\in\mathbb R Q(x)=0,x∈R (保证在实轴没有瑕点)
(2) ∂ Q ( x ) − ∂ P ( x ) > 0 \partial Q(x)-\partial P(x)>0 ∂Q(x)−∂P(x)>0 (保证积分收敛)
则广义积分收敛
∫
−
∞
+
∞
P
(
x
)
Q
(
x
)
e
i
m
x
d
x
=
2
π
i
∑
I
m
z
k
>
0
R
e
s
(
P
(
z
)
Q
(
z
)
e
i
m
z
,
z
k
)
,
m
>
0
\int_{-\infty}^{+\infty}\frac{P(x)}{Q(x)}\mathrm{e}^{imx}\mathrm{d}x =2\pi i\sum_{\mathrm{Im}z_k>0}\mathrm{Res}\left(\frac{P(z)}{Q(z)}\mathrm{e}^{imz},z_k\right) , m>0
∫−∞+∞Q(x)P(x)eimxdx=2πiImzk>0∑Res(Q(z)P(z)eimz,zk),m>0
P
r
o
o
f
\it Proof
Proof
∫
−
∞
+
∞
P
(
x
)
Q
(
x
)
e
i
m
x
d
x
=
∫
−
∞
+
∞
P
(
x
)
Q
(
x
)
cos
(
m
x
)
d
x
+
i
∫
−
∞
+
∞
P
(
x
)
Q
(
x
)
sin
(
m
x
)
d
x
\int_{-\infty}^{+\infty}\frac{P(x)}{Q(x)}\mathrm{e}^{imx}\mathrm{d}x =\int_{-\infty}^{+\infty}\frac{P(x)}{Q(x)}\cos(mx)\mathrm{d}x +i\int_{-\infty}^{+\infty}\frac{P(x)}{Q(x)}\sin(mx)\mathrm{d}x
∫−∞+∞Q(x)P(x)eimxdx=∫−∞+∞Q(x)P(x)cos(mx)dx+i∫−∞+∞Q(x)P(x)sin(mx)dx
由Dirichlet判别法容易证明积分收敛,从而原积分
I
=
lim
R
→
+
∞
∫
−
R
R
P
(
z
)
Q
(
z
)
e
i
m
z
d
z
I=\lim_{R\to+\infty}\int_{-R}^{R}\frac{P(z)}{Q(z)}\mathrm{e}^{imz}\mathrm{d}z
I=R→+∞lim∫−RRQ(z)P(z)eimzdz
如图,在复平面上添加围道
Γ
R
\Gamma_R
ΓR ,则由留数定理有
∫
−
R
+
R
P
(
z
)
Q
(
z
)
e
i
m
z
d
z
+
∫
Γ
R
P
(
z
)
Q
(
z
)
e
i
m
z
d
z
=
2
π
i
∑
I
m
z
k
>
0
,
∣
z
k
∣
<
R
R
e
s
(
P
(
z
)
Q
(
z
)
e
i
m
z
,
z
k
)
\int_{-R}^{+R}\frac{P(z)}{Q(z)}\mathrm{e}^{imz}\mathrm{d}z +\int_{\Gamma_R}\frac{P(z)}{Q(z)}\mathrm{e}^{imz}\mathrm{d}z =2\pi i\sum_{\mathrm{Im}z_k>0,|z_k|<R}\mathrm{Res}\left(\frac{P(z)}{Q(z)}\mathrm{e}^{imz},z_k\right)
∫−R+RQ(z)P(z)eimzdz+∫ΓRQ(z)P(z)eimzdz=2πiImzk>0,∣zk∣<R∑Res(Q(z)P(z)eimz,zk)
由于
∂
Q
(
x
)
−
∂
P
(
x
)
>
0
\partial Q(x)-\partial P(x)>0
∂Q(x)−∂P(x)>0,由Jordan引理知
lim
R
→
+
∞
∫
Γ
R
P
(
z
)
Q
(
z
)
e
i
m
z
d
z
=
0
\lim_{R\to+\infty}\int_{\Gamma_R}\frac{P(z)}{Q(z)}\mathrm{e}^{imz}\mathrm{d}z=0
R→+∞lim∫ΓRQ(z)P(z)eimzdz=0
从而
∫
−
∞
+
∞
P
(
x
)
Q
(
x
)
e
i
m
x
d
x
=
2
π
i
∑
I
m
z
k
>
0
R
e
s
(
P
(
z
)
Q
(
z
)
e
i
m
z
,
z
k
)
\int_{-\infty}^{+\infty}\frac{P(x)}{Q(x)}\mathrm{e}^{imx}\mathrm{d}x =2\pi i\sum_{\mathrm{Im}z_k>0}\mathrm{Res}\left(\frac{P(z)}{Q(z)}\mathrm{e}^{imz},z_k\right)
∫−∞+∞Q(x)P(x)eimxdx=2πiImzk>0∑Res(Q(z)P(z)eimz,zk)
四、有瑕点的广义积分
e
.
g
.
\bf e.g.
e.g. 求
∫
0
+
∞
sin
x
x
d
x
\int_0^{+\infty}\frac{\sin x}{x}\mathrm{d}x
∫0+∞xsinxdx
s
o
l
v
e
\it solve
solve
∫
0
+
∞
sin
x
x
d
x
=
∫
0
1
sin
x
x
d
x
+
∫
1
+
∞
sin
x
x
d
x
\int_0^{+\infty}\frac{\sin x}{x}\mathrm{d}x=\int_0^1\frac{\sin x}{x}\mathrm{d}x+\int_1^{+\infty}\frac{\sin x}{x}\mathrm{d}x
∫0+∞xsinxdx=∫01xsinxdx+∫1+∞xsinxdx
两部分都收敛,从而原积分收敛
∫
0
+
∞
sin
x
x
d
x
=
1
2
i
∫
−
∞
+
∞
i
sin
x
x
d
x
=
1
2
i
lim
ε
→
0
lim
R
→
+
∞
∫
ε
<
∣
x
∣
<
R
i
sin
x
x
d
x
\int_0^{+\infty}\frac{\sin x}{x}\mathrm{d}x =\frac{1}{2i}\int_{-\infty}^{+\infty}\frac{i\sin x}{x}\mathrm{d}x =\frac{1}{2i} \lim_{\varepsilon\to0}\lim_{R\to+\infty} \int_{\varepsilon<|x|<R}\frac{i\sin x}{x}\mathrm{d}x
∫0+∞xsinxdx=2i1∫−∞+∞xisinxdx=2i1ε→0limR→+∞lim∫ε<∣x∣<Rxisinxdx
= 1 2 i lim ε → 0 lim R → + ∞ ( ∫ ε < ∣ x ∣ < R i sin x x d x + ∫ ε < ∣ x ∣ < R cos x x d x ) =\frac{1}{2i} \lim_{\varepsilon\to0}\lim_{R\to+\infty} \left( \int_{\varepsilon<|x|<R}\frac{i\sin x}{x}\mathrm{d}x +\int_{\varepsilon<|x|<R}\frac{\cos x}{x}\mathrm{d}x \right) =2i1ε→0limR→+∞lim(∫ε<∣x∣<Rxisinxdx+∫ε<∣x∣<Rxcosxdx)
= 1 2 i lim ε → 0 lim R → + ∞ ∫ ε < ∣ x ∣ < R e i x x d x = 1 2 i lim ε → 0 lim R → + ∞ ∫ ε < ∣ z ∣ < R e i z z d z =\frac{1}{2i} \lim_{\varepsilon\to0}\lim_{R\to+\infty} \int_{\varepsilon<|x|<R}\frac{\mathrm{e}^{ix}}{x}\mathrm{d}x =\frac{1}{2i} \lim_{\varepsilon\to0}\lim_{R\to+\infty} \int_{\varepsilon<|z|<R}\frac{\mathrm{e}^{iz}}{z}\mathrm{d}z =2i1ε→0limR→+∞lim∫ε<∣x∣<Rxeixdx=2i1ε→0limR→+∞lim∫ε<∣z∣<Rzeizdz
如图添加围道
Γ
R
\Gamma_R
ΓR 和
Γ
ε
\Gamma_\varepsilon
Γε ,则由Cauchy积分定理
∫
ε
<
∣
z
∣
<
R
e
i
z
z
d
z
+
∫
Γ
R
e
i
z
z
d
z
+
∫
Γ
ε
e
i
z
z
d
z
=
0
\int_{\varepsilon<|z|<R}\frac{\mathrm{e}^{iz}}{z}\mathrm{d}z +\int_{\Gamma_R}\frac{\mathrm{e}^{iz}}{z}\mathrm{d}z +\int_{\Gamma_\varepsilon}\frac{\mathrm{e}^{iz}}{z}\mathrm{d}z=0
∫ε<∣z∣<Rzeizdz+∫ΓRzeizdz+∫Γεzeizdz=0
现在我们分别求后面两项的极限
首先由Jordan引理知
∫
Γ
R
e
i
z
z
d
z
→
0
\int_{\Gamma_R}\frac{\mathrm{e}^{iz}}{z}\mathrm{d}z\to0
∫ΓRzeizdz→0
而由Laurent展式知
e
i
z
z
=
1
z
+
h
(
z
)
\frac{\mathrm{e}^{iz}}{z}=\frac{1}{z}+h(z)
zeiz=z1+h(z)
,其中
h
(
z
)
h(z)
h(z)在
z
=
0
z=0
z=0解析
从而在 z=0 局部有界
∣
h
(
z
)
∣
≤
M
|h(z)|\leq M
∣h(z)∣≤M
因此
∫
Γ
ε
e
i
z
z
d
z
=
∫
Γ
ε
1
z
d
z
+
∫
Γ
ε
h
(
z
)
d
z
=
−
π
i
+
∫
Γ
ε
h
(
z
)
d
z
\int_{\Gamma_\varepsilon}\frac{\mathrm{e}^{iz}}{z}\mathrm{d}z =\int_{\Gamma_\varepsilon}\frac{1}{z}\mathrm{d}z +\int_{\Gamma_\varepsilon}h(z)\mathrm{d}z =-\pi i +\int_{\Gamma_\varepsilon}h(z)\mathrm{d}z
∫Γεzeizdz=∫Γεz1dz+∫Γεh(z)dz=−πi+∫Γεh(z)dz
而
∣
∫
Γ
ε
h
(
z
)
d
z
∣
≤
π
ε
M
→
0
,从而
∫
Γ
ε
e
i
z
z
d
z
→
−
π
i
\left|\int_{\Gamma_\varepsilon}h(z)\mathrm{d}z\right|\leq\pi\varepsilon M\to 0 ,从而 \int_{\Gamma_\varepsilon}\frac{\mathrm{e}^{iz}}{z}\mathrm{d}z\to -\pi i
∫Γεh(z)dz
≤πεM→0,从而∫Γεzeizdz→−πi
综上
I
=
1
2
i
⋅
π
i
=
π
2
I=\frac{1}{2i}\cdot\pi i=\frac{\pi}{2}
I=2i1⋅πi=2π
5.2.3 利用多值函数求实积分
5.3 留数的应用——解析函数零点的个数与分布
5.3.1 辐角原理
回顾:解析函数的零点具有孤立性
设 f f f 在有界区域 D D D内解析,连续到边界,并且 ∀ z ∈ ∂ D , f ( z ) ≠ 0 \forall z\in\partial D,f(z)\neq0 ∀z∈∂D,f(z)=0
若 f f f在 D D D不恒等于零,则 f f f在 D D D内个零点个数至多是有限个
问:零点个数(算重数)与 f f f有什么关系?
对于多项式
P
n
(
z
)
=
a
n
z
n
+
⋯
+
a
1
z
+
a
0
=
a
n
(
z
−
z
1
)
r
1
…
(
z
−
z
s
)
r
s
P_n(z)=a_nz^n+\dots+a_1z+a_0=a_n(z-z_1)^{r_1}\dots(z-z_s)^{r_s}
Pn(z)=anzn+⋯+a1z+a0=an(z−z1)r1…(z−zs)rs
设其有零点
z
1
,
…
,
z
s
z_1,\dots,z_s
z1,…,zs,重数分别为
r
1
,
…
,
r
s
r_1,\dots,r_s
r1,…,rs,则
r
1
+
⋯
+
r
s
=
n
r_1+\dots+r_s=n
r1+⋯+rs=n
则
P
n
′
(
z
)
P
n
(
z
)
=
r
1
z
−
z
1
+
r
2
z
−
z
2
+
⋯
+
r
s
z
−
z
s
\frac{P'_n(z)}{P_n(z)}=\frac{r_1}{z-z_1}+\frac{r_2}{z-z_2}+\dots+\frac{r_s}{z-z_s}
Pn(z)Pn′(z)=z−z1r1+z−z2r2+⋯+z−zsrs
对于充分大的
R
R
R,使得
∣
z
k
∣
<
R
|z_k|<R
∣zk∣<R对于所有零点成立,则
1
2
π
i
∮
C
R
(
0
)
P
n
′
(
z
)
P
n
(
z
)
d
z
=
r
1
+
r
2
+
⋯
+
r
s
=
n
\frac{1}{2\pi i}\oint_{C_R(0)}\frac{P'_n(z)}{P_n(z)}\mathrm{d}z=r_1+r_2+\dots+r_s=n
2πi1∮CR(0)Pn(z)Pn′(z)dz=r1+r2+⋯+rs=n
下面我们将这个结果推广到一般的解析函数
L e m m a \bf Lemma Lemma
设 f ( z ) f(z) f(z)在 z k z_k zk解析,且 z k z_k zk是 f ( z ) f(z) f(z)的 r k r_k rk阶零点
则
z
k
z_k
zk是
f
′
(
z
)
f
(
z
)
\frac{f'(z)}{f(z)}
f(z)f′(z)的一阶极点,且
R
e
s
(
f
′
(
z
)
f
(
z
)
,
z
k
)
=
r
k
\mathrm{Res}\left(\frac{f'(z)}{f(z)},z_k\right)=r_k
Res(f(z)f′(z),zk)=rk
P
r
o
o
f
\it Proof
Proof
由于
z
k
z_k
zk是
f
(
z
)
f(z)
f(z)的
r
k
r_k
rk阶零点,从而
f
(
z
k
)
=
⋯
=
f
(
r
k
−
1
)
(
z
k
)
=
0
f(z_k)=\dots=f^{(r_k-1)}(z_k)=0
f(zk)=⋯=f(rk−1)(zk)=0
则
f
(
z
)
f(z)
f(z)在
z
k
z_k
zk的Taylor展式为
f
(
z
)
=
∑
n
=
r
k
+
∞
a
n
(
z
−
z
k
)
n
=
(
z
−
z
k
)
r
k
φ
(
z
)
f(z)=\sum_{n=r_k}^{+\infty}a_n(z-z_k)^n=(z-z_k)^{r_k}\varphi(z)
f(z)=n=rk∑+∞an(z−zk)n=(z−zk)rkφ(z)
其中
φ
(
z
)
\varphi(z)
φ(z) 在
z
k
z_k
zk解析且
φ
(
z
k
)
≠
0
\varphi(z_k)\neq 0
φ(zk)=0
从而
KaTeX parse error: Can't use function '$' in math mode at position 62: …r_k}\varphi'(z)$̲
即
f
′
(
z
)
f
(
z
)
=
r
k
z
−
z
k
+
φ
′
(
z
)
φ
(
z
)
\frac{f'(z)}{f(z)}=\frac{r_k}{z-z_k}+\frac{\varphi'(z)}{\varphi(z)}
f(z)f′(z)=z−zkrk+φ(z)φ′(z)
,积分求得留数
R
e
s
(
f
′
(
z
)
f
(
z
)
,
z
k
)
=
r
k
\mathrm{Res}\left(\frac{f'(z)}{f(z)},z_k\right)=r_k
Res(f(z)f′(z),zk)=rk
T
h
e
o
r
e
m
\bf Theorem
Theorem(辐角原理)
设 D 是有界区域, ∂ D \partial D ∂D 是有限条分段光滑的简单闭合曲线
f ( z ) f(z) f(z) 在 D D D 解析,在 D ‾ \overline D D连续,且 f ( z ) 在 ∂ D f(z) 在 \partial D f(z)在∂D 上无零点
设
f
(
z
)
f(z)
f(z) 在
D
D
D 内的零点个数为
N
N
N (算重数),则
N
=
1
2
π
i
∮
∂
D
f
′
(
z
)
f
(
z
)
d
z
N=\frac{1}{2\pi i}\oint_{\partial D}\frac{f'(z)}{f(z)}\mathrm{d}z
N=2πi1∮∂Df(z)f′(z)dz
P
r
o
o
f
\it Proof
Proof
(1) 若
f
f
f在
D
D
D内无零点,则
f
′
(
z
)
f
(
z
)
\frac{f'(z)}{f(z)}
f(z)f′(z)在
D
D
D解析,在
D
‾
\overline D
D连续,由CIT知上述积分为零
(2) 设
f
f
f在
D
D
D内有零点
z
1
,
…
,
z
s
z_1,\dots,z_s
z1,…,zs,重数为
r
1
,
…
,
r
s
r_1,\dots,r_s
r1,…,rs,设
N
=
r
1
+
⋯
+
r
s
N=r_1+\dots+r_s
N=r1+⋯+rs
由引理,
z
1
,
…
,
z
s
z_1,\dots,z_s
z1,…,zs是
f
′
(
z
)
f
(
z
)
\frac{f'(z)}{f(z)}
f(z)f′(z)的一阶极点,且
R
e
s
(
f
′
(
z
)
f
(
z
)
,
z
k
)
=
r
k
\mathrm{Res}\left(\frac{f'(z)}{f(z)},z_k\right)=r_k
Res(f(z)f′(z),zk)=rk
从而由留数定理
1
2
π
i
∮
∂
D
f
′
(
z
)
f
(
z
)
d
z
=
r
1
+
⋯
+
r
s
=
N
\frac{1}{2\pi i}\oint_{\partial D}\frac{f'(z)}{f(z)}\mathrm{d}z=r_1+\dots+r_s=N
2πi1∮∂Df(z)f′(z)dz=r1+⋯+rs=N
R
e
m
a
r
k
\bf Remark
Remark
辐角原理的几何解释如下
N
=
1
2
π
i
∮
∂
D
f
′
(
z
)
f
(
z
)
d
z
=
1
2
π
i
∮
∂
D
d
f
(
z
)
f
(
z
)
N=\frac{1}{2\pi i}\oint_{\partial D}\frac{f'(z)}{f(z)}\mathrm{d}z =\frac{1}{2\pi i}\oint_{\partial D}\frac{\mathrm{d}f(z)}{f(z)}
N=2πi1∮∂Df(z)f′(z)dz=2πi1∮∂Df(z)df(z)
令
ω
=
f
(
z
)
,则
N
=
1
2
π
i
∮
f
(
∂
D
)
d
ω
ω
\omega=f(z) ,则 N=\frac{1}{2\pi i}\oint_{f(\partial D)}\frac{\mathrm{d}\omega}{\omega}
ω=f(z),则N=2πi1∮f(∂D)ωdω
等于绕原点的圈数
当
z
z
z 在
∂
D
\partial D
∂D 上走,
f
(
z
)
f(z)
f(z) 在
f
(
∂
D
)
f(\partial D)
f(∂D) 上走,即
N
=
1
2
π
Δ
∂
D
A
r
g
f
(
z
)
N=\frac{1}{2\pi}\Delta_{\partial D}\mathrm{Arg}f(z)
N=2π1Δ∂DArgf(z)
e . g . f ( z ) = z ( z − 1 ) ( z − 2 ) \bf e.g. f(z)=z(z-1)(z-2) e.g.f(z)=z(z−1)(z−2)
A
r
g
f
(
z
)
=
A
r
g
z
+
A
r
g
(
z
−
1
)
+
A
r
g
(
z
−
2
)
\mathrm{Arg}f(z)=\mathrm{Arg}z+\mathrm{Arg}(z-1)+\mathrm{Arg}(z-2)
Argf(z)=Argz+Arg(z−1)+Arg(z−2)
当 R 充分大时,沿
∣
z
∣
=
R
|z|=R
∣z∣=R 逆时针走,
1
2
π
Δ
∂
D
A
r
g
f
(
z
)
=
6
π
2
π
=
3
=
N
\frac{1}{2\pi}\Delta_{\partial D}\mathrm{Arg}f(z)=\frac{6\pi}{2\pi}=3=N
2π1Δ∂DArgf(z)=2π6π=3=N
辐角原理还可以推广到亚纯函数的情形,证明思路类似
L e m m a \bf Lemma Lemma
设 z 0 z_0 z0是 f ( z ) f(z) f(z)的 m m m阶极点,则 z 0 z_0 z0是 f ′ ( z ) f ( z ) \frac{f'(z)}{f(z)} f(z)f′(z)的一阶极点,且 R e s ( f ′ ( z ) f ( z ) , z 0 ) = − m \mathrm{Res}\left(\frac{f'(z)}{f(z)},z_0\right)=-m Res(f(z)f′(z),z0)=−m
T h e o r e m \bf Theorem Theorem(辐角原理)
设 D D D是有界区域, ∂ D \partial D ∂D是有限条分段光滑的简单闭合曲线
f ( z ) f(z) f(z)是 D D D上的亚纯函数,且 f ( z ) f(z) f(z)在 ∂ D \partial D ∂D上无零点并解析
设 f ( z ) f(z) f(z)在 D D D内的零点和极点个数分别为 N N N和 P P P(算重数)
则
1
2
π
i
∮
∂
D
f
′
(
z
)
f
(
z
)
d
z
=
N
−
P
\frac{1}{2\pi i}\oint_{\partial D}\frac{f'(z)}{f(z)}\mathrm{d}z=N-P
2πi1∮∂Df(z)f′(z)dz=N−P
作为辐角原理的应用,我们还有如下定理
T h e o r e m ( H u r w i t z ) \bf Theorem(Hurwitz) Theorem(Hurwitz)
设 { f n ( z ) } \{f_n(z)\} {fn(z)} 是在区域 D D D 内内闭一致收敛于 f ( z ) f(z) f(z) 的解析函数列
且所有 f n ( z ) f_n(z) fn(z)在 D D D内无零点,则 f ( z ) f(z) f(z)在 D D D内或者恒等于零,或者没有零点
P
r
o
o
f
\it Proof
Proof
假设
f
(
z
)
f(z)
f(z)在
D
D
D内有零点
z
0
z_0
z0,且
f
(
z
)
f(z)
f(z)在
D
D
D内不恒等于零
则由零点的孤立性,
∃
B
‾
(
z
0
,
δ
)
⊂
D
\exists\overline B(z_0,\delta)\subset D
∃B(z0,δ)⊂D使得
f
(
z
)
f(z)
f(z)只有零点
z
0
z_0
z0,但由辐角原理
N
=
1
2
π
i
∮
C
δ
(
z
0
)
f
′
(
z
)
f
(
z
)
d
z
=
lim
n
→
∞
1
2
π
i
∮
C
δ
(
z
0
)
f
n
′
(
z
)
f
n
(
z
)
d
z
=
0
N=\frac{1}{2\pi i}\oint_{C_\delta(z_0)}\frac{f'(z)}{f(z)}\mathrm{d}z =\lim_{n\to\infty}\frac{1}{2\pi i}\oint_{C_\delta(z_0)}\frac{f'_n(z)}{f_n(z)}\mathrm{d}z=0
N=2πi1∮Cδ(z0)f(z)f′(z)dz=n→∞lim2πi1∮Cδ(z0)fn(z)fn′(z)dz=0
矛盾
5.3.2 Rouche定理
T h e o r e m \bf Theorem Theorem(Rouche,鲁歇定理)
设 D 是有界区域, ∂ D \partial D ∂D是有限条分段光滑的简单闭合曲线, f 和 g 在 D 解析, D ‾ \overline D D连续
若 ∀ z ∈ ∂ D , ∣ g ( z ) ∣ < ∣ f ( z ) ∣ \forall z\in\partial D , |g(z)|<|f(z)| ∀z∈∂D,∣g(z)∣<∣f(z)∣,则 f + g f+g f+g与 f f f在 D D D有相同的零点个数(算重数)
等价:若 ∀ z ∈ ∂ D , ∣ f ( z ) − g ( z ) ∣ < ∣ f ( z ) ∣ o r ∣ g ( z ) ∣ \forall z\in\partial D , |f(z)-g(z)|<|f(z)| or |g(z)| ∀z∈∂D,∣f(z)−g(z)∣<∣f(z)∣or∣g(z)∣, f f f与 g g g 在 D D D 零点数相同
P
r
o
o
f
\it Proof
Proof
因为
∀
z
∈
∂
D
,
∣
f
(
z
)
∣
>
∣
g
(
z
)
∣
≥
0
\forall z\in\partial D , |f(z)|>|g(z)|\geq0
∀z∈∂D,∣f(z)∣>∣g(z)∣≥0,所以
f
f
f在
∂
D
\partial D
∂D上无零点
由解析函数零点的孤立性知,
f
f
f在
D
D
D内至多有有限个零点,设为
N
1
N_1
N1个(算重数)
同理由于
∀
z
∈
∂
D
,
∣
f
(
z
)
+
g
(
z
)
∣
≥
∣
f
(
z
)
∣
−
∣
g
(
z
)
∣
>
0
\forall z\in\partial D , |f(z)+g(z)|\geq|f(z)|-|g(z)|>0
∀z∈∂D,∣f(z)+g(z)∣≥∣f(z)∣−∣g(z)∣>0
所以
f
+
g
f+g
f+g 在
D
D
D 内至多有有限个零点,设为
N
2
N_2
N2 个(算重数)
由辐角原理
N
1
=
1
2
π
Δ
∂
D
A
r
g
f
(
z
)
N
2
=
1
2
π
Δ
∂
D
A
r
g
(
f
(
z
)
+
g
(
z
)
)
=
1
2
π
Δ
∂
D
A
r
g
[
f
(
z
)
(
1
+
g
(
z
)
f
(
z
)
)
]
=
1
2
π
Δ
∂
D
A
r
g
f
(
z
)
+
1
2
π
Δ
∂
D
A
r
g
(
1
+
g
(
z
)
f
(
z
)
)
N_1=\frac{1}{2\pi}\Delta_{\partial D}\mathrm{Arg}f(z) \begin{align} N_2&=\frac{1}{2\pi}\Delta_{\partial D}\mathrm{Arg}(f(z)+g(z))\\[1ex] &=\frac{1}{2\pi}\Delta_{\partial D}\mathrm{Arg}\left[f(z)\left(1+\frac{g(z)}{f(z)}\right)\right]\\[1ex] &=\frac{1}{2\pi}\Delta_{\partial D}\mathrm{Arg}f(z) +\frac{1}{2\pi}\Delta_{\partial D}\mathrm{Arg}\left(1+\frac{g(z)}{f(z)}\right)\\[1ex] \end{align}
N1=2π1Δ∂DArgf(z)N2=2π1Δ∂DArg(f(z)+g(z))=2π1Δ∂DArg[f(z)(1+f(z)g(z))]=2π1Δ∂DArgf(z)+2π1Δ∂DArg(1+f(z)g(z))
由于
∀
z
∈
∂
D
,
∣
g
(
z
)
f
(
z
)
∣
<
1
\forall z\in\partial D , \left|\frac{g(z)}{f(z)}\right|<1
∀z∈∂D,
f(z)g(z)
<1
当
z
z
z 沿
∂
D
\partial D
∂D 变动时,
1
+
g
(
z
)
f
(
z
)
1+\frac{g(z)}{f(z)}
1+f(z)g(z) 不可能绕原点变动
则
1
2
π
Δ
∂
D
A
r
g
(
1
+
g
(
z
)
f
(
z
)
)
=
0
\frac{1}{2\pi}\Delta_{\partial D}\mathrm{Arg}\left(1+\frac{g(z)}{f(z)}\right)=0
2π1Δ∂DArg(1+f(z)g(z))=0
即
N
1
=
N
2
N_1=N_2
N1=N2
R e m a r k \bf Remark Remark
Rouche定理可以用来估计零点的分布情况