几种孤立奇点的概念及其判断

本文深入探讨了复分析中奇点的三种主要类型:可去奇点、孤立奇点和本性极点,详细解释了每种奇点的定义、条件及如何通过洛朗展开进行识别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

奇点的引入和分类是为了方便留数的计算

1. 可去奇点

(1)定义: 此点的洛朗展开不含负次幂的项。

(2)可去奇点的条件:
lim ⁡ z → z 0 f ( z ) = C 0 , ( C 0 为 。 一 复 常 数 ) 。 \lim_{z \to z_0}f(z)=C_0,(C_0为。一复常数)。 zz0limf(z)=C0,C0

f ( z ) 在 z   0   的 一 个 邻 域 内 有 界 。 f(z)在z~0~的一个邻域内有界。 f(z)z 0 

2. 孤立奇点

(1)定义: 此点的洛朗展开含有限个负次幂的项。按含项的多少又记作阶数。

(2)极点的条件:
lim ⁡ z → z 0 f ( z ) = ∞ \lim_{z \to z_0} f(z) = \infty zz0limf(z)=

(3)阶数的判断:
利用极点与零点的关系。

如果 z 0 z_0 z0也是分子的零点,最终要与分母的零点阶数相减。如果不减的话计算方便,也可不减。

3. 本性极点

(1)定义: 此点的洛朗展开只含无穷个负次幂的项。

(2)本性奇点的条件: 不存在有限或无穷的极限lim z->z0f(z)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值