可视化学习笔记11-pytorch-GradCAM可视化自己的网络

本文介绍了如何使用GradCAM在PyTorch中可视化卷积网络的关注区域,帮助理解模型在预测时的注意力焦点。通过定义GradCAM类、获取热力图并展示结果,读者可以对网络的注意力分布有直观认识。
摘要由CSDN通过智能技术生成

对视觉类论文详解(免费)感兴趣的同学,可以关注微信公众号 李卓璐随手记,将会不定期发布,注意查收哦~

可视化笔记2-pytorch 可视化卷积网络中间特征层的基础上使用CAM方法可视化网络对待测对象关注的位置。

1.定义GradCAM类

注意:代码中需要改的3个地方已经用注释标清,大家使用时注意修改。

class GradCAM(nn.Module):
    def __init__(self):
        super(GradCAM, self).__init__(
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值