使用torchsummary包实现网络结构可视化

文章介绍了在Windows环境下,通过pip安装torchsummary来查看PyTorch模型的输入和输出形状,以及模型结构。torchsummary的关键函数是summary,需要提供模型和输入尺寸。使用时需注意设备设置,避免CUDA和CPU类型不匹配的错误。示例展示了如何对vgg16模型进行总结。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.安装torchsummary

Windows+r,打开cmd命令,使用pip下载安装包

pip install torchsummary

下载安装截图

torchsummary:能够查看模型的输入和输出的形状,可以更加清楚地输出模型的结构
下面是torchsummary的结构:

torchsummary.summary(model, input_size, batch_size=-1, device="cuda")

功能:查看模型的信息,便于调试
1.model: pytorch 模型,必须继承自 nn.Module
2.input_size: 模型输入 size,形状为 C,H ,W
3.batch_size:batch_size,默认为 -1,在展示模型每层输出的形状时显示的batch_size
4.device:“cuda"或者"cpu”
5.使用时需要注意,默认device=‘cuda’,如果是在‘cpu’,那么就需要更改。不匹配就会出现下面的错误:

RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor) should be the same

2.输出网格结构
完成以上步骤后,进入自己的python环境,运行代码如下:

from torchsummary import summary      # 导入summary
from torchvision.models import vgg16  # 导入vgg16,以 vgg16 为例

model = vgg16()  # 实例化网络,可以换成自己的网络
summary(model, (3, 64, 64))  # 输出网络结构

from torchsummary import summary
summary(model, input_size=(channels, H, W))
torchsummary的使用基于下述核心API,只要提供给summary函数模型以及输入的size就可以了。来源

运行代码,结果如下:
运行图片1
运行图片2
经上图可见,torchsummary可以查看每一层的网格参数量,网络模型大小等信息。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦在黎明破晓时啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值