如何选择深度强化学习算法:MuZero/SAC/PPO/TD3/DDPG/DQN/等算法

本文详细介绍了深度强化学习中不同算法的适用场景和特点,包括DQN、DDPG、TD3、SAC、PPO等。在离散动作空间中,推荐D3QN;在连续动作空间,推荐TD3和SAC,而PPO因其稳定性和易于调参受到推崇。特别地,文章强调了MuZero在基于模型的强化学习中的重要地位。此外,还讨论了稀疏奖励、多智能体、分层强化学习等领域,并提供了算法选择的建议和学习曲线的评估标准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

赶时间请直接看加粗的四种算法,它们占据不同的生态位,请根据实际任务需要去选择他们,在强化学习的子领域(多智能体、分层强化学习、逆向强化学习也会以它们为基础开发新的算法):

  • 离散动作空间推荐:Dueling DoubleDQN(D3QN)
  • 连续动作空间推荐:擅长调参就用 TD3,不擅长调参就用 PPO 或 SAC,如果训练环境 Reward function 都是初学者写的,那就用 PPO

没入门深度强化学习的人请按顺序学习以下算法:

  • 入门深度学习 / 机器学习,用多层全连接层跑一下 MNIST 数据集
  • 入门深度学习 / 深度学习框架,用卷积网络跑一下 MNIST-fashion 数据集
  • 入门经典强化学习 Q-learning,离散状态、离散动作
  • 入门深度强化学习 DQN(Deep Q-learning),连续状态、离散动作
  • 入门深度强化学习 DDPG(Deep DPG),连续状态,连续动作
  • 入门后,可以先从 TD3、SAC 和 PPO 三种算法开始用起

用于入门的算法只能用来入门࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汀、人工智能

十分感谢您的支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值