多元函数积分


1. 公式测试

∫ a b f ( x ) d x \int_{a}^{b}f(x)dx abf(x)dx

∫ a b f ( x ) d x \int_{a}^{b}f(x)dx abf(x)dx

∫ a b f ( x ) d x \int_{a}^{b}f(x)dx abf(x)dx

β + ∇ ∯ + d x + ad \sqrt{\beta}+\nabla \oiint{}+dx+\text{ad} β + +dx+ad

介绍

本文档简要介绍重积分以及曲线曲面积分即多元函数积分学

2. 重积分(包含二重积分和三重积分)

2.1 二重积分

其原型研究的是形如 z = f ( x , y ) z=f(x,y) z=f(x,y),该函数又称为二元单值函数

该函数在实际的物理背景中可以简要的找到两个基本例子(需要注意的是在下列情形中z均大于零且在 D D D上连续)

  • 曲顶柱体的体积
  • 平面薄片的质量

在上述问题中其结果均可表示为 lim ⁡ λ → 0 ∑ n i = 1 f ( ξ i , η i ) Δ σ i \underset{\lambda \rightarrow 0}{\lim}\underset{i=1}{\overset{n}{\sum{}}}f\left( \xi _i,\eta _i \right) \Delta \sigma _i λ0limi=1nf(ξi,ηi)Δσi

上面两个问题的实际意义虽然不同,但所求量都归结为同一形式的和的极限。在物理、力学、几何和工程技术中都有应用。因此抽象出二重积分的定义

定义 设 f ( x , y ) f(x,y) f(x,y)是有界闭区域 D D D上的有界函数.将闭区域 D D D 任意分成 n n n 个小闭区域

Δ σ 1 , Δ σ 2 , ⋯   , Δ σ n   , \Delta\sigma_1,\Delta\sigma_2,\cdots,\Delta\sigma_n\:, Δσ1,Δσ2,,Δσn,

其中 Δ σ i \Delta\sigma_i Δσi表示第 i i i个小闭区域,也表示它的面积.在每个 Δ σ i \Delta\sigma_i Δσi上任取一点 ( ξ i , η i ) (\xi_{i},\eta_{i}) (ξi,ηi),作乘积 f ( ξ i , η i ) Δ σ i ( i = 1 , 2 , ⋯   , n ) f(\xi_i,\eta_{i})\Delta\sigma_{i}(i=1,2,\cdots,n) f(ξi,ηi)Δσi(i=1,2,,n),并作和 ∑ i = 1 n f ( ξ i , η i ) Δ σ i \sum_i=1^{n}f(\xi_{i},\eta_{i})\Delta\sigma_{i} i=1nf(ξi,ηi)Δσi.如果当各小闭区域的直径中的最大值 λ → 0 \lambda\to0 λ0时,这和的极限总存在,且与闭区域 D D D的分法及点 ( ξ i , η i ) (\xi_i,\eta_i) (ξi,ηi)的取法无关,那么称此极限为函数 f ( x , y ) f(x,y) f(x,y)在闭区域 D D D上的二重积分,记作
∬ D f ( x , y ) d σ , \underset{D}{\iint{}}f\left( x,y \right) \text{d}\sigma , Df(x,y)dσ,

∬ D f (   x   , y   )   d σ   = lim ⁡ λ → 0 ∑ i = 1 n f (   ξ i   , η i   )   Δ σ i .   ( 1 − 1 ) \iint\limits_{D}f(\:x\:,y\:)\:\mathrm{d}\sigma\:=\lim\limits_{\lambda\to0}\sum\limits_{i=1}^{n}f(\:\xi_{i}\:,\eta_{i}\:)\:\Delta\sigma_{i}.\ (1-1) Df(x,y)dσ=λ0limi=1nf(ξi,ηi)Δσi. (11)

其中 f ( x , y ) f(x,y) f(x,y)叫做被积函数 , f ( x , y ) ,f(x,y) ,f(x,y)d σ \sigma σ 叫做被积表达式,d σ \sigma σ 叫做面积元素 , x ,x ,x y y y

叫做积分变量, D D D叫做积分区域, ∑ n i = 1 f ( ξ i , η i ) Δ σ i \underset{i=1}{\overset{n}{\sum{}}}f\left( \xi _i,\eta _i \right) \Delta \sigma _i i=1nf(ξi,ηi)Δσi叫做积分和

  • 其同样具有积分的一些相关性质
    1. 线性可加性
    2. 积分区域可加性
    3. 积分中值定理等

2.2 二重积分的计算

二重积分计算的根本方法是将二重积分转换为二次单积分在转换的方法中有两种可以理解下面分别以直角坐标系和极坐标系为例,需要注意的是方法是可以互换的。

2.2.1 利用直角坐标系计算二重积分

先求截面面积再通过截面面积求出体积的思路并加以推广其分为两种

且二者可以相互转换但时常要进行分割处理

  • 先对 y y y、后对 x x x的二次积分(下列表达式的中间式名称不过常记作三式)

其表达式为

∬ D f ( x , y ) d σ = ∫ a b [ ∫ φ 1 ( x ) φ 2 ( x ) f ( x , y ) d y ] d x = ∫ a b d x ∫ φ i ( x ) φ 2 ( x ) f ( x , y ) d y \iint\limits_{D}{f\left( x,y \right) \text{d}\sigma}=\int_a^b{\left[ \int_{\varphi _1\left( x \right)}^{\varphi _2\left( x \right)}{f\left( x,y \right) \text{d}y} \right] \text{d}x}=\int_a^b{\text{d}x}\int_{\varphi _i\left( x \right)}^{\varphi _2\left( x \right)}{f\left( x,y \right) \text{d}y} Df(x,y)dσ=ab[φ1(x)φ2(x)f(x,y)dy]dx=abdxφi(x)φ2(x)f(x,y)dy

  • 先对 x x x、后对 y y y的二次积分

其表达式为

∬ D f ( x , y ) d σ = ∫ c d [ ∫ φ 1 ( y ) φ 2 ( y ) f ( x , y ) d x ] d y = ∫ c d d y ∫ φ i ( y ) φ 2 ( y ) f ( x , y ) d x \iint\limits_{D}{f\left( x,y \right) \text{d}\sigma}=\int_c^d{\left[ \int_{\varphi _1\left( y \right)}^{\varphi _2\left( y \right)}{f\left( x,y \right) \text{d}x} \right] \text{d}y}=\int_c^d{\text{d}y}\int_{\varphi _i\left( y \right)}^{\varphi _2\left( y \right)}{f\left( x,y \right) \text{d}x} Df(x,y)dσ=cd[φ1(y)φ2(y)f(x,y)dx]dy=cddyφi(y)φ2(y)f(x,y)dx

2.2.2 利用极坐标系计算二重积分

在这里从二重积分的定义出发进行思考

按二重积分的定义来看问题的重点在于求解小闭区域的面积 Δ σ i \Delta\sigma_{i} Δσi

  • 其计算过程如下

Δ σ i = 1 2 ( ρ i + Δ ρ i ) 2 ⋅ Δ θ i − 1 2 ρ i 2 ⋅ Δ θ i = 1 2 ( 2 ρ i + Δ ρ i ) Δ ρ i ⋅ Δ θ i = ρ i + ( ρ i + Δ ρ i ) 2 ⋅ Δ ρ i ⋅ Δ θ i = ρ ˉ i ⋅ Δ ρ i ⋅ Δ θ i , \begin{aligned} \Delta \sigma _i&=\frac{1}{2}\left( \rho _i+\Delta \rho _i \right) ^2\cdot \Delta \theta _i-\frac{1}{2}\rho _{i}^{2}\cdot \Delta \theta _i=\frac{1}{2}\left( 2\rho _i+\Delta \rho _i \right) \Delta \rho _i\cdot \Delta \theta _i\\ &=\frac{\rho _i+\left( \rho _i+\Delta \rho _i \right)}{2}\cdot \Delta \rho _i\cdot \Delta \theta _i=\bar{\rho}_i\cdot \Delta \rho _i\cdot \Delta \theta _i,\\ \end{aligned} Δσi=21(ρi+Δρi)2Δθi21ρi2Δθi=21(2ρi+Δρi)ΔρiΔθi=2ρi+(ρi+Δρi)ΔρiΔθi=ρˉiΔρiΔθi,

其中 ρ ˉ i \bar{\rho}_i ρˉi 表示相邻两圆弧的半径的平均值.在这小闭区域内取圆周 ρ = ρ ˉ i \rho=\bar{\rho}_i ρ=ρˉi 上的一点( ρ ˉ i , θ ˉ i ) \bar{\rho}_i,\bar{\theta}_i) ρˉi,θˉi),该点的直角坐标设为( ξ i , η i \xi_i,\eta_i ξi,ηi),则由直角坐标与极坐标之间的关系有 ξ i = ρ ˉ i cos ⁡ θ ˉ i , η i = ρ ˉ i sin ⁡ θ ˉ i . \xi_{i}=\bar{\rho}_{i}\cos\bar{\theta}_{i},\eta_{i}=\bar{\rho}_{i}\sin\bar{\theta}_{i}. ξi=ρˉicosθˉi,ηi=ρˉisinθˉi.于是

lim ⁡ λ → 0 ∑ i = 1 n   f (   ξ i   , η i   )   Δ σ i   = lim ⁡ λ → 0 ∑ i = 1 n   f (   ρ ˉ i cos ⁡   θ ˉ i   , ρ i sin ⁡   θ ˉ i   )   ρ ˉ i   ⋅   Δ ρ i   ⋅   Δ θ i   , \lim\limits_{\lambda\to0}\sum\limits_{i=1}^{n}\:f(\:\xi_{i}\:,\eta_{i}\:)\:\Delta\sigma_{i}\:=\lim\limits_{\lambda\to0}\sum\limits_{i=1}^{n}\:f(\:\bar{\rho}_{i}\cos\:\bar{\theta}_{i}\:,\rho_{i}\sin\:\bar{\theta}_{i}\:)\:\bar{\rho}_{i}\:\cdot\:\Delta\rho_{i}\:\cdot\:\Delta\theta_{i}\:, λ0limi=1nf(ξi,ηi)Δσi=λ0limi=1nf(ρˉicosθˉi,ρisinθˉi)ρˉiΔρiΔθi,

∬ D f (   x   , y   )   d σ   =   ∬ D f (   ρ cos ⁡   θ   , ρ sin ⁡   θ   )   ρ d ρ d θ . \iint\limits_{D}f(\:x\:,y\:)\:\mathrm{d}\sigma\:=\:\iint\limits_{D}f(\:\rho\cos\:\theta\:,\rho\sin\:\theta\:)\:\rho\mathrm{d}\rho\mathrm{d}\theta. Df(x,y)dσ=Df(ρcosθ,ρsinθ)ρdρdθ.

需要注意的是 ∬ D f ( x , y ) d σ \iint\limits_{D}{f\left( x,y \right) \text{d}\sigma} Df(x,y)dσ也常写作 ∬ D f ( x , y ) d x d y \iint\limits_D{f\left( x,y \right) \text{d}x\text{d}y} Df(x,y)dxdy,所以上式又可1写成

∬ D f ( x , y ) d x d y = ∬ D f ( ρ cos ⁡ θ , ρ sin ⁡ θ ) ρ d ρ d θ . \iint\limits_{D}f( x ,y ) \mathrm{d}x \mathrm{d}y=\iint\limits_{D}f( \rho\cos \theta ,\rho\sin \theta ) \rho\mathrm{d}\rho\mathrm{d}\theta. Df(x,y)dxdy=Df(ρcosθ,ρsinθ)ρdρdθ.

其中 ρ d ρ d θ \rho\mathrm{d}\rho\mathrm{d}\theta ρdρdθ就是极坐标系中的面积元素

  • 转换为二次积分的公式为

∬ D f ( ρ cos ⁡ θ , ρ sin ⁡ θ ) ρ d ρ d θ = ∫ α β [ ∫ φ 1 ( θ ) φ 2 ( θ ) f ( ρ cos ⁡ θ , ρ sin ⁡ θ ) ρ d ρ ] d θ . \iint\limits_{D}f( \rho\cos \theta ,\rho\sin \theta ) \rho\mathrm{d}\rho\mathrm{d}\theta = \int_{\alpha}^{\beta}\Big[ \int_{\varphi_{1}( \theta)}^{\varphi_{2}( \theta)}f( \rho\cos \theta ,\rho\sin \theta ) \rho\mathrm{d}\rho\Big]\mathrm{d}\theta. Df(ρcosθ,ρsinθ)ρdρdθ=αβ[φ1(θ)φ2(θ)f(ρcosθ,ρsinθ)ρdρ]dθ.


典例

计算 ∬ D e − x 2 − y 2 d x d y \iint\limits_{D}\mathrm{e}^{-x^{2}-y^{2}}\text{d}x\text{d}y Dex2y2dxdy,其中 D D D是由圆心在原点、半径为 a a a 的圆周所围成

的闭区域.

在极坐标系中,闭合区域 D D D可表示为

0 ⩽ ρ ⩽ a   ,   0 ⩽ θ ⩽ 2   π . 0\leqslant\rho\leqslant a\:,\:0\leqslant\theta\leqslant2\:\pi. 0ρa,0θ2π.

由公式(2-4)及(2-5)有

∬ D e − x 2 − y 2 d x d y = ∬ D e − ρ 2 ρ d ρ d θ =   ∫ 0 2 π   [   ∫ 0 a   e − ρ 2 ρ d ρ   ] d θ =   ∫ 0 2 π   [   − 1 2 e − ρ 2   ] 0 a d θ = 1 2 (   1   − e − a 2   )   ∫ 0 2 π d θ = π (   1   −   e − a 2   )   . \begin{aligned}\iint_{D}\mathrm{e}^{-x^{2}-y^{2}}\mathrm{d}x\mathrm{d}y&=\iint_{D}\mathrm{e}^{-\rho^{2}}\rho\mathrm{d}\rho\mathrm{d}\theta=\:\int_{0}^{2\pi}\:\left[\:\int_{0}^{a}\:\mathrm{e}^{-\rho^{2}}\rho\mathrm{d}\rho\:\right]\mathrm{d}\theta\\&=\:\int_{0}^{2\pi}\:\left[\:-\frac{1}{2}\mathrm{e}^{-\rho^{2}}\:\right]_{0}^{a}\mathrm{d}\theta=\frac{1}{2}(\:1\:-\mathrm{e}^{-a^{2}}\:)\:\int_{0}^{2\pi}\mathrm{d}\theta\\&=\pi(\:1\:-\:\mathrm{e}^{-a^{2}}\:)\:.\end{aligned} Dex2y2dxdy=Deρ2ρdρdθ=02π[0aeρ2ρdρ]dθ=02π[21eρ2]0adθ=21(1ea2)02πdθ=π(1ea2).

本题如果用直角坐标计算,因为积分 ∫ e − x 2 d x \int\mathrm{e}^{-x^2}\text{d}x ex2dx 不能用初等函数表示,所以算
不出来.现在我们利用上面的结果来计算工程上常用的反常积分 ∫ 0 + ∞ e − π 2 d x . \int _0^{+ \infty }\mathrm{e} ^{- \pi ^2}\text{d}x. 0+eπ2dx.

∫ 0 + ∞ e − x 2 d x = π 2 . \int_0^{+\infty}\mathrm{e}^{-x^2}\mathrm{d}x=\frac{\sqrt{\pi}}{2}. 0+ex2dx=2π .

2.2.3 二重积分的换元法

  • 定理 设 f ( x , y ) f(x,y) f(x,y) x O y xOy xOy平面上的闭区域 D D D上连续,若变换

T : x = x ( u   , v ) , y = y ( u   , v ) T:x=x\left(\begin{array}{c}u\:,v\end{array}\right),y=y\left(\begin{array}{c}u\:,v\end{array}\right) T:x=x(u,v),y=y(u,v)

μ O ν \mu O \nu μOν 平面上的闭区域 D ′ D^\prime D变为 x O y xOy xOy平面上的 D D D,且满足

(1) x ( u , v ) , y ( u , v ) x(u,v),y(u,v) x(u,v),y(u,v) D ′ D^\prime D上具有一阶连续偏导数;

(2)在 D ′ D^\prime D上雅可比式

J (   u   , v   )   = ∂ (   x   , y   ) ∂ (   u   , v   ) ≠ 0   ; J(\:u\:,v\:)\:=\frac{\partial(\:x\:,y\:)}{\partial(\:u\:,v\:)}\neq0\:; J(u,v)=(u,v)(x,y)=0;

(3)变换 T : D ′ → D T:D^\prime\to D T:DD是一对一的,

则有

∬ D f (   x   , y   )   d x d y = ∬ D ′ f [   x   (   u   , v   )   , y (   u   , v   )   ]   ∣   J (   u   , v   )   ∣   d u   d v . \iint\limits_{D}f(\:x\:,y\:)\:\mathrm{d}x\mathrm{d}y=\iint\limits_{D^{\prime}}f[\:x\:(\:u\:,v\:)\:,y(\:u\:,v\:)\:]\:|\:J(\:u\:,v\:)\:|\:\mathrm{d}u\:\mathrm{d}v. Df(x,y)dxdy=Df[x(u,v),y(u,v)]J(u,v)dudv.

称为二重积分的换元公式

  • 证明略思路从面积微元出发结合坐标变换

2.3 三重积分

  • 定义 f ( x , y , z ) f(x,y,z) f(x,y,z)是空间有界闭区域 Ω \Omega Ω上的有界函数.将 Ω \Omega Ω任意分成 n n n

小闭区域

Δ v 1   , Δ v 2   , ⋯   , Δ v n   , \Delta v_1\:,\Delta v_2\:,\cdots,\Delta v_n\:, Δv1,Δv2,,Δvn,

其中 Δ v i \Delta v_i Δvi表示第 i i i个小闭区域,也表示它的体积.在每个 Δ v i \Delta v_i Δvi上任取一点 ( ξ i , η i , ζ i ) (\xi_{i},\eta_{i},\zeta_{i}) (ξi,ηi,ζi),作乘积 f ( ξ i , η i , ζ i ) Δ v i f( \xi _{i}, \eta _{i}, \zeta _{i}) \Delta v_{i} f(ξi,ηi,ζi)Δvi ( i = 1 , 2 , ⋯   , n ) ( i= 1, 2, \cdots , n) (i=1,2,,n),并作和
∑ n i = 1 f ( ξ i , η i , ζ i ) Δ v i . \underset{i=1} {\overset{n}{\sum{}}}f(\xi_{i},\eta_{i},\zeta_{i})\Delta v_{i}. i=1nf(ξi,ηi,ζi)Δvi.
如果当各小闭区域直径中的最大值 λ → 0 \lambda\to0 λ0时,这和的极限总存在,且与闭区域 Ω \Omega Ω的分法及点 ( ξ i , η i , ζ i ) (\xi_i,\eta_i,\zeta_i) (ξi,ηi,ζi)的取法无关,那么称此极限为函数 f ( x , y , z ) f(x,y,z) f(x,y,z)在闭区域 Ω \Omega Ω上的三重积分.记作 ∭ Ω f ( x , y , z ) d v \iiint\limits_{\Omega}f(x,y,z)\text{d}v Ωf(x,y,z)dv,即

∭ Ω f ( x , y , z ) d v = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i , η i , ζ i ) Δ v i , 其中 f ( x , y , z ) 叫做被积函数 , d v 叫做体积元素 , Ω 叫做积分区域 . \iiint_{\Omega}f( x ,y ,z) \mathrm{d}v = \lim_{\lambda\to0}\sum_{i=1}^{n}f( \xi_{i} ,\eta_{i} ,\zeta_{i} ) \Delta v_{i} ,\\\text{其中}f( x ,y ,z ) \text{叫做被积函数} ,\mathrm{d}v \text{叫做体积元素} ,\Omega \text{叫做积分区域}. Ωf(x,y,z)dv=λ0limi=1nf(ξi,ηi,ζi)Δvi,其中f(x,y,z)叫做被积函数,dv叫做体积元素,Ω叫做积分区域.

在直角坐标系中,如果用平行于坐标面的平面来划分 Ω \Omega Ω,那么除了包含 Ω \Omega Ω的边界点的一些不规则小闭区域外,得到的小闭区域 Δ v i \Delta v_i Δvi为长方体.设长方体小闭区域 Δ v i \Delta v_{i} Δvi的边长为 Δ x j , Δ y k \Delta x_{j},\Delta y_{k} Δxj,Δyk Δ z i \Delta z_{i} Δzi,则 Δ v i = Δ x j Δ y k Δ z i . \Delta v_{i}=\Delta x_{j}\Delta y_{k}\Delta z_{i}. Δvi=ΔxjΔykΔzi.因此在直角坐标系中,有时也把体积元素 d v \text{d}v dv 记作 d x d y d z \text{d}x\text{d}y\text{d}z dxdydz,而把三重积分记作

∭ Ω f (   x   , y   , z   )   d x d y d z   , \iiint\limits_{\Omega}f(\:x\:,y\:,z\:)\:\mathrm{d}x\mathrm{d}y\mathrm{d}z\:, Ωf(x,y,z)dxdydz,

其中 d x d y d z \text{d}x\text{d}y\text{d}z dxdydz 叫做直角坐标系中的体积元素.

2.4 三重积分的计算

该部分不过多赘述还是围绕转化为多次单积分以及不同的坐标系包括直角坐标系,柱坐标系,球坐标系 而不同的坐标系转换均可从雅可比行列式的角度出发

3. 曲线积分与曲面积分

  • 该节将把积分概念推广到积分范围为一段曲线弧或曲面的情形(具有有限长度的曲线和具有有限面积的曲面)同时引入通量,散度,环流量,旋度以及场的概念。

3.1 第一类曲线积分(对弧长的曲线积分)

  1. 定义
    L L L x O y xOy xOy面内的一条光滑曲线弧,函数 f ( x , y ) f(x,y) f(x,y) L L L上有界。在 L L L上任意插入一点列 M 1 , M 2 , ⋯   , M n − 1 M_1,M_2,\cdots,M_{n-1} M1,M2,,Mn1 L L L分成 n n n个小段。设第 i i i个小段的长度为 Δ s i . \Delta s_{i}. Δsi. 又 ( ξ i , η i ) 又 ( \xi _{i}, \eta _{i}) (ξi,ηi) 为第 为 第 为第 i i i 个小段上任意取定的一点 , 作乘积 个 小 段 上 任 意 取 定 的 一 点 , 作 乘 积 个小段上任意取定的一点,作乘积 f ( ξ i , η i ) f( \xi _{i}, \eta _{i}) f(ξi,ηi) Δ s i \Delta s_{i} Δsi ( i = 1 ( i= 1 (i=1 , 2 , ⋯   , n ) 2,\cdots,n) 2,,n),并作和 ∑ i = 1 n f ( ξ i , η i ) Δ s i \sum_i=1^nf(\xi_i,\eta_i)\Delta s_i i=1nf(ξi,ηi)Δsi,如果当各小弧段的长度的最大值 λ → 0 \lambda\to0 λ0 时,这和的极限总存在,且与曲线弧 L L L 的分法及点( ξ i , η i \xi_i,\eta_i ξi,ηi)的取法无关,那么称此极限为函数 f ( x , y ) f(x,y) f(x,y)在曲线弧 L L L 上对弧长的曲线积分或第一类曲线积分,记作 ∫ L f ( x , y ) ds ⁡ \int_Lf(x,y)\operatorname{ds} Lf(x,y)ds,即

∫ L f (   x   , y   )   d s = lim ⁡ λ → 0 ∑ i = 1 n   f (   ξ i   , η i   )   Δ s i   , \int_{L}f(\:x\:,y\:)\:\mathrm{d}s=\lim_{\lambda\to0}\sum_{i=1}^{n}\:f(\:\xi_{i}\:,\eta_{i}\:)\:\Delta s_{i}\:, Lf(x,y)ds=λ0limi=1nf(ξi,ηi)Δsi,
其中 f ( x , y ) f(x,y) f(x,y)叫做被积函数, L L L叫做积分弧段.

  1. 对弧长的曲线积分的计算法
    • 定理 f ( x , y ) f(x,y) f(x,y)在曲线弧 L L L上有定义且连续, L L L的参数方程为

{ x = φ ( t ) , y = ψ ( t ) ( α ⩽ t ⩽ β ) , 若  φ ( t ) , ψ ( t ) 在 [ α , β ] 上具有一阶连续导数 , 且  φ ′ 2 ( t ) + ψ ′ 2 ( t ) ≠ 0 , 则曲线积分 ∫ L f ( x , y ) d s 存在 , 且 ∫ L f ( x , y ) d s = ∫ α β f [ φ ( t ) , ψ ( t ) ] φ ′ 2 ( t ) + ψ ′ 2 ( t ) d t ( α < β ) . ( 1 − 1 ) \begin{cases}x=\varphi\left( t \right),\\y=\psi\left( t \right)\end{cases} ( \alpha\leqslant t\leqslant\beta ) ,\\\text{若 }\varphi( t ) ,\psi( t ) \text{在}\left[ \alpha ,\beta \right]\text{上具有一阶连续导数} ,\text{且 }\varphi^{\prime2}\left( t \right)+\psi^{\prime2}\left( t \right)\neq0 ,\text{则曲线积分}\\\int_{L}f( x ,y ) \mathrm{d}s \text{存在} , \text{且}\\\int_{L}f( x ,y ) \mathrm{d}s = \int_{\alpha}^{\beta}f[ \varphi( t ) ,\psi( t ) ] \sqrt{\varphi^{\prime2}( t ) +\psi^{\prime2}( t )} \mathrm{d}t\quad( \alpha<\beta ) .\quad( 1-1 ) {x=φ(t),y=ψ(t)(αtβ), φ(t),ψ(t)[α,β]上具有一阶连续导数, φ′2(t)+ψ′2(t)=0,则曲线积分Lf(x,y)ds存在,Lf(x,y)ds=αβf[φ(t),ψ(t)]φ′2(t)+ψ′2(t) dt(α<β).(11)

3.2 第二类曲线积分(对坐标的曲线积分)

  1. 定义

该种积分研究的函数为向量函数该函数应用丰富如:变力做功

∫ L P ( x , y ) d x = lim ⁡ λ → 0 ∑ i = 1 n P ( ξ i , η i ) Δ x i , \int_L{P\left( x,y \right) \text{d}x}=\underset{\lambda \rightarrow 0}{\lim}\sum_{i=1}^n{P\left( \xi _i,\eta _i \right) \Delta x_i}, LP(x,y)dx=λ0limi=1nP(ξi,ηi)Δxi,

∫ L Q ( x , y ) d y = lim ⁡ λ → 0 ∑ i = 1 n Q ( ξ i , η i ) Δ y i , \int_L{Q\left( x,y \right) \text{d}y}=\underset{\lambda \rightarrow 0}{\lim}\sum_{i=1}^n{Q\left( \xi _i,\eta _i \right) \Delta y_i}, LQ(x,y)dy=λ0limi=1nQ(ξi,ηi)Δyi,

以上两个积分也称为第二类曲线积分,也常写成

∫ L P ( x , y ) d x + ∫ L Q ( x , y ) d y \int_L{P\left( x,y \right) \text{d}x}+\int_L{Q\left( x,y \right) \text{d}y} LP(x,y)dx+LQ(x,y)dy

为了方便起见把上式写成

∫ L P ( x , y ) d x + Q ( x , y ) d y \int_L{P\left( x,y \right) \text{d}x+Q\left( x,y \right) \text{d}y} LP(x,y)dx+Q(x,y)dy

也可写成向量形式

∫ L F ⃗ ( x , y ) ⋅ d r ⃗ \int_L{\vec{F}\left(x,y\right)\cdot \text{d}\vec{r}} LF (x,y)dr

其中 F ⃗ ( x , y ) = P ( x , y ) i ⃗ + Q ( x , y ) j ⃗ \vec{F}\left( x,y \right) =P\left( x,y \right) \vec{i}+Q\left( x,y \right) \vec{j} F (x,y)=P(x,y)i +Q(x,y)j 为向量值函数, d r ⃗ = d x i ⃗ + d y j ⃗ \text{d}\vec{r}=\text{d}x\vec{i}+\text{d}y\vec{j} dr =dxi +dyj

  • 性质(线性可加等)
  1. 计算

定理 设 P ( x , y ) P(x,y) P(x,y) Q ( x , y ) Q(x,y) Q(x,y)在有向曲线弧 L L L上有定义且连续 , L ,L ,L的参数方
程为

{ x = φ (   t   )   , y = ψ (   t   )   , \begin{cases}x=\varphi(\:t\:)\:,\\y=\psi(\:t\:)\:,\end{cases} {x=φ(t),y=ψ(t),

当参数 t t t单调地由 α \alpha α变到 β \beta β时,点 M ( x , y ) M(x,y) M(x,y) L L L的起点 A A A沿 L L L运动到终点 B B B ,若 φ ( t ) \varphi(t) φ(t) ψ ( t ) \psi(t) ψ(t)在以 α \alpha α β \beta β为端点的闭区间上具有一阶连续导数,且 φ ′ 2 ( t ) + ψ ′ 2 ( \varphi^{\prime2}(t)+\psi ^{\prime 2}( φ′2(t)+ψ′2( t t t ) ≠ 0 ) \neq 0 )=0 ,则曲线积分 ∫ L P ( x , y ) d x + Q ( x , y ) d y \int _LP(x, y)\text{d}x+ Q(x, y)\text{d}y LP(x,y)dx+Q(x,y)dy存在,且

∫ L P (   x   , y   )   d x   + Q (   x   , y   )   d y = ∫ α β ∣ P [   φ (   t   )   , ψ (   t   )   ] φ ′ (   t   )   + Q [   φ (   t   )   , ψ (   t   )   ] ψ ′ (   t   )   ∣   d t . (2-1) \begin{aligned}&\int_{L}P(\:x\:,y\:)\:\mathrm{d}x\:+Q(\:x\:,y\:)\:\mathrm{d}y\\&=\int_{\alpha}^{\beta}\mid P[\:\varphi(\:t\:)\:,\psi(\:t\:)\:]\varphi^{\prime}(\:t\:)\:+Q[\:\varphi(\:t\:)\:,\psi(\:t\:)\:]\psi^{\prime}(\:t\:)\:|\:\mathrm{d}t.&\text{(2-1)}\end{aligned} LP(x,y)dx+Q(x,y)dy=αβP[φ(t),ψ(t)]φ(t)+Q[φ(t),ψ(t)]ψ(t)dt.(2-1)

3.3 两类曲线积分的联系

∫ L P d x + Q d y = ∫ L ( P cos ⁡ α + Q cos ⁡ β ) d s , \int_{L} P\mathrm{d}x + Q\mathrm{d}y = \int_{L} ( P\cos \alpha+Q\cos \beta ) \mathrm{d}s , LPdx+Qdy=L(Pcosα+Qcosβ)ds,

3.4 格林公式

3.5 第一类面积分(对面积的曲面积分)

3.6 第二类面积分(对坐标的曲面积分)

3.7 高斯公式

4.雅可比行列式(Jacobian)与雅可比矩阵(jacobi matrix)

5.场论初步

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值