4.不定积分
4.1.定义
如果函数 F(x) 满足 F′(x)=f(x),则称 F(x) 是 f(x) 的一个原函数。不定积分
∫
f
(
x
)
d
x
\int f(x) dx
∫f(x) dx
表示 f(x) 的所有原函数,通常写成:
∫
f
(
x
)
d
x
=
F
(
x
)
+
C
\int f(x) dx=F(x)+C
∫f(x) dx=F(x)+C
其中,C是积分常数,表示原函数的不确定性。 f(x)是被积函数,dx表示对 x 的积分变量。
不定积分的结果是一个函数簇,而不是一个具体的数值。其几何含义是一组平行的曲线簇。
4.2.基本积分公式
-
常数积分:
∫ k d x = k x + C ( 其中 k 是常数 ) ∫k dx=kx+C(其中 k 是常数) ∫k dx=kx+C(其中k是常数) -
幂函数积分:
∫ x n d x = x n + 1 n + 1 + C ( 其中 n ≠ − 1 ) ∫x^{n} dx=\dfrac{x^{n+1}}{n+1}+C(其中 n≠−1) ∫xn dx=n+1xn+1+C(其中n=−1) -
指数函数积分:
∫ e x d x = e x + C ∫e^{x} dx=e^{x}+C ∫ex dx=ex+C∫ a x d x = a x l n a + C ( 其中 a > 0 且 a ≠ 1 ) ∫a^{x} dx=\dfrac{a^{x}}{lna}+C(其中 a>0 且 a≠1) ∫ax dx=lnaax+C(其中a>0且a=1)
-
对数函数积分:
∫ 1 x d x = l n ∣ x ∣ + C ∫\dfrac{1}{x} dx=ln∣x∣+C ∫x1 dx=ln∣x∣+C -
三角函数积分:
∫ s i n x d x = − c o s x + C ∫sinx dx=−cosx+C ∫sinx dx=−cosx+C∫ c o s x d x = s i n x + C ∫cosx dx=sinx+C ∫cosx dx=sinx+C
-
反三角函数积分:
∫ 1 1 − x 2 d x = a r c s i n x + C ∫\dfrac{1}{\sqrt{1−x^{2}}} dx=arcsinx+C ∫1−x21 dx=arcsinx+C∫ 1 1 + x 2 d x = a r c t a n x + C ∫\dfrac{1}{1+x^{2}} dx=arctanx+C ∫1+x21 dx=arctanx+C
4.3.换元积分法
4.3.1 第一类换元积分法
-
选择合适的变量替换:
选择一个合适的变量替换 u=g(x),使得积分变得更简单。 -
求导数:
求 u 对 x 的导数
d u d x = g ′ ( x ) \dfrac{du}{dx}=g′(x) dxdu=g′(x)
,并将其改写为
d u = g ′ ( x ) d x du=g′(x) dx du=g′(x) dx -
替换积分变量:
将原积分中的 x 替换为 u,并将 dx 替换为
d u g ′ ( x ) \dfrac{du}{g′(x)} g′(x)du -
求解新积分:
求解新的积分
∫ f ( u ) d u ∫f(u) du ∫f(u) du -
回代变量:
将 u 回代为 g(x),得到最终的不定积分结果。
简单理解就是观察函数,将d前边的某一部分求原函数,然后放到d的里面。
4.3.2 第二类换元积分法
第二类换元积分法通常涉及三角函数替换或带根号形式的替换。
-
选择合适的变量替换:
选择一个合适的变量替换 x=g(t),使得积分变得更简单。 -
求导数:
求 x 对 t 的导数
d x d t = g ′ ( t ) \dfrac{dx}{dt}=g′(t) dtdx=g′(t)
,并将其改写为
d x = g ′ ( t ) d t dx=g′(t) dt dx=g′(t) dt -
替换积分变量:
将原积分中的 x 替换为 g(t),并将 dx替换为 g′(t) dt。 -
求解新积分:
求解新的积分
∫ f ( g ( t ) ) g ′ ( t ) d t ∫f(g(t))g′(t) dt ∫f(g(t))g′(t) dt -
回代变量:
将 t 回代为
g − 1 ( x ) g^{−1}(x) g−1(x)
,得到最终的不定积分结果。
简单理解就是将变量替换 x=g(t),对dx求出dt,然后对t进行积分,最后将t换回x。
5.定积分
定积分是微积分中的一个重要概念,用于求解函数在某个区间上的累积效应或面积。
5.1.定义
定积分
∫
a
b
f
(
x
)
d
x
∫_{a}^{b}f(x) dx
∫abf(x) dx
表示函数 f(x)在区间 [a,b]上的累积效应或面积。定积分的定义可以通过以下步骤来理解:
-
分割区间:
将区间 [a,b]分割成 n 个小区间,每个小区间的长度为 Δxi,其中
Δ x i = x i − x i − 1 Δx_{i}=x_{i}−x_{i−1} Δxi=xi−xi−1
,且 x0=a,xn=b。 -
取样本点:
在每个小区间
[ x i − 1 , x i ] [x_{i−1},x_{i}] [xi−1,xi]
内取一个样本点 ξi。 -
构造黎曼和:
构造黎曼和
∑ i = 1 n f ( ξ i ) Δ x i \sum _{i=1}^{n}f(ξ_{i})Δx_i i=1∑nf(ξi)Δxi
,表示函数 f(x) 在区间 [a,b]上的近似累积效应或面积。 -
取极限:
当分割的区间数 n 趋向于无穷大,且每个小区间的长度 Δxi趋向于零时,黎曼和的极限即为定积分:
∫ a b f ( x ) d x = lim n → ∞ ∑ i = 1 n f ( ξ i ) Δ x i ∫_{a}^{b}f(x) dx=\lim _{n\rightarrow \infty}\sum _{i=1}^{n}f(ξ_{i})Δx_{i} ∫abf(x) dx=n→∞limi=1∑nf(ξi)Δxi
说明:
黎曼和是通过将区间 [a,b]分成 n 个等宽的子区间,每个子区间的宽度为
Δ
x
=
b
−
a
n
Δx=\dfrac{b−a}{n}
Δx=nb−a
,然后选择每个子区间内的一点 xi,计算矩形的面积之和来近似积分的。
黎曼和可以表示为:
S
n
=
∑
i
=
1
n
f
(
x
i
)
Δ
x
S_n=∑_{i=1}^nf(x_i)Δx
Sn=i=1∑nf(xi)Δx
其中:
- Sn是黎曼和的值。
- n是子区间的数量。
- xi是第 i个子区间 [xi−1,xi]内的一点。
- Δx是每个子区间的宽度。
以上定义的几何图形:
5.2.几何意义
定积分
∫
a
b
f
(
x
)
d
x
∫_{a}^{b}f(x) dx
∫abf(x) dx
的几何意义是函数 f(x) 在区间 [a,b]上的曲线下面积。具体来说:
- 如果 f(x)≥0,则定积分表示曲线下方的面积。
- 如果 f(x)≤0,则定积分表示曲线上方的面积的负值。
5.3.性质
定积分具有以下重要性质:
-
线性性质:
∫ a b [ c f ( x ) + d g ( x ) ] d x = c ∫ a b f ( x ) d x + d ∫ a b g ( x ) d x ∫_{a}^{b}[cf(x)+dg(x)] dx=c∫_{a}^{b}f(x) dx+d∫_{a}^{b}g(x) dx ∫ab[cf(x)+dg(x)] dx=c∫abf(x) dx+d∫abg(x) dx
其中 c 和 d 是常数。 -
区间可加性:
∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x ∫_{a}^{b}f(x) dx=∫_{a}^{c}f(x) dx+∫_{c}^{b}f(x) dx ∫abf(x) dx=∫acf(x) dx+∫cbf(x) dx
其中 a≤c≤b。 -
积分上下限交换:
∫ a b f ( x ) d x = − ∫ b a f ( x ) d x ∫_{a}^{b}f(x) dx=−∫_{b}^{a}f(x) dx ∫abf(x) dx=−∫baf(x) dx -
定积分中值定理
如果函数 f(x) 在闭区间 [a,b] 上连续,则存在 c∈[a,b],使得:
∫ a b f ( x ) d x = f ( c ) ( b − a ) ∫_{a}^{b}f(x) dx=f(c)(b−a) ∫abf(x) dx=f(c)(b−a)
证明:
设f(x)在[a,b]上连续,因为闭区间上连续函数必有最大最小值,不妨设最大值为M,最小值为m,最大值和最小值可相等。
对
m
≤
f
(
x
)
≤
M
m\leq f(x)\leq M
m≤f(x)≤M
两边同时积分可得:
m
(
b
−
a
)
≤
∫
a
b
f
(
x
)
d
x
≤
M
(
b
−
a
)
m(b-a)\leq \int _{a}^{b}f(x)dx\leq M(b-a)
m(b−a)≤∫abf(x)dx≤M(b−a)
同除以b-a从而得到:
m
≤
1
(
b
−
a
)
∫
a
b
f
(
x
)
d
x
≤
M
m\leq \dfrac{1}{(b-a)}\int _{a}^{b}f(x)dx\leq M
m≤(b−a)1∫abf(x)dx≤M
由连续函数的介值定理可知,必定
∃
c
∈
[
a
,
b
]
\exists c\in [a,b]
∃c∈[a,b]
,使得
f
(
c
)
=
1
(
b
−
a
)
∫
a
b
f
(
x
)
d
x
f(c)=\dfrac{1}{(b-a)}\int _{a}^{b}f(x)dx
f(c)=(b−a)1∫abf(x)dx
,即:
∫
a
b
f
(
x
)
d
x
=
f
(
c
)
(
b
−
a
)
,
∃
c
∈
[
a
,
b
]
\int _{a}^{b}f(x)dx=f(c)(b-a),\exists c\in [a,b]
∫abf(x)dx=f(c)(b−a),∃c∈[a,b]
5.4.微积分基本公式
牛顿-莱布尼茨公式
∫
a
b
f
(
x
)
d
x
=
F
(
b
)
−
F
(
a
)
∫_{a}^{b}f(x)dx=F(b)−F(a)
∫abf(x)dx=F(b)−F(a)
其中, F ( x ) 是 f ( x ) 的一个原函数,即 F ′ ( x ) = f ( x ) 。 其中,F(x)是 f(x)的一个原函数,即 F′(x)=f(x)。 其中,F(x)是f(x)的一个原函数,即F′(x)=f(x)。
微积分基本定理
微积分基本定理分为两部分,分别描述了积分上限函数的性质和定积分的基本公式。
第一部分(Part 1)
如果 f(t) 在区间 [a,b]上连续,则积分上限函数
F
(
x
)
=
∫
a
x
f
(
t
)
d
t
F(x)=∫_{a}^{x}f(t) dt
F(x)=∫axf(t) dt
在区间 [a,b] 上可导,并且其导数为:
F
′
(
x
)
=
f
(
x
)
F′(x)=f(x)
F′(x)=f(x)
第一基本定理表明不定积分是微分的逆运算,保证了某连续函数的原函数的存在性。
第二部分(Part 2)
如果 F(x)是 f(x)的一个原函数,即 F′(x)=f(x),则:
∫
a
b
f
(
x
)
d
x
=
F
(
b
)
−
F
(
a
)
∫_{a}^{b}f(x) dx=F(b)−F(a)
∫abf(x) dx=F(b)−F(a)
第二基本定理则提供了定积分和不定积分之间的联系,使得定积分的计算变得简便。
5.5.定积分换元法
步骤
- 选择合适的变量替换:
选择一个合适的变量替换 t=g(x),使得积分变得更简单,并求反函数:
x = g − 1 ( t ) = h ( t ) x=g^{-1}(t)=h(t) x=g−1(t)=h(t)
- 求导数:
对 x 的导数
d x = h ′ ( t ) d t dx=h'(t)dt dx=h′(t)dt
- 替换积分变量:
将原积分中的 x 替换为 t,并将 dx 替换为
h ′ ( t ) d t h'(t)dt h′(t)dt
-
确定新的积分上下限:
将原积分的上下限 a 和 b 替换为新的上下限 t 的值。即 t 的下限为 t1,上限为 t2。 -
求解新积分:
求解新的定积分
∫ t 1 t 2 f ( h ( t ) ) h ′ ( t ) d t ∫_{t_{1}}^{t_{2}}f(h(t)) h'(t)dt ∫t1t2f(h(t)) h′(t)dt
6.多元函数
6.1.二元极限
定义
设函数 f(x,y) 在点 (a,b) 的某个去心邻域内有定义。如果对于任意给定的正数 ϵ,总存在正数 δ,使得当
0
<
(
x
−
a
)
2
+
(
y
−
b
)
2
<
δ
0<\sqrt{(x−a)^2+(y−b)^2}<δ
0<(x−a)2+(y−b)2<δ
时,总有:
∣f(x,y)−L∣<ϵ
则称 L 为函数 f(x,y)在点 (a,b)处的极限,记作:
lim
(
x
,
y
)
→
(
a
,
b
)
f
(
x
,
y
)
=
L
\lim _{(x,y)\rightarrow (a,b)}f(x,y)=L
lim(x,y)→(a,b)f(x,y)=L
几何意义
当点 (x,y)从任意方式趋近于点 (a,b) 时,函数 f(x,y) 的值趋近于 L。换句话说,函数图像在二维平面的点 (a,b)附近趋近于一个三维立体平面上的点 (a,b,L)。可将(a,b)想象为(a,b,L)投影在二维平面的点。
如果 (x,y)从不同方式趋近于点 (a,b),函数 f(x,y) 的值不相等,则表示 f(x,y) 不存在。
6.2.偏导数
偏导数是多元函数求导的一种形式,表示在多个自变量中,当其中一个自变量改变而其他自变量保持不变时函数值的变化率。
这实质上是将其他自变量视为常数,然后按照单变量函数求导的方法进行运算。
定义
设函数 f(x,y) 在点 (x0,y0) 的某个邻域内有定义。如果极限:
lim
Δ
x
→
0
f
(
x
0
+
Δ
x
,
y
0
)
−
f
(
x
0
,
y
0
)
Δ
x
\lim_{Δx→0}\dfrac{f(x_0+Δx,y_0)−f(x_0,y_0)}{Δx}
Δx→0limΔxf(x0+Δx,y0)−f(x0,y0)
存在,则称此极限为函数 f(x,y)在点 (x0,y0) 处对 x 的偏导数,记作:
∂
f
∂
x
∣
(
x
0
,
y
0
)
或
f
x
′
(
x
0
,
y
0
)
\dfrac{∂f}{∂x}∣(x_0,y_0)或f'_x(x_0,y_0)
∂x∂f∣(x0,y0)或fx′(x0,y0)
类似地,如果极限:
lim
Δ
y
→
0
f
(
x
0
,
y
0
+
Δ
y
)
−
f
(
x
0
,
y
0
)
Δ
y
\lim _{Δy→0}\dfrac{f(x_0,y_0+Δy)−f(x_0,y_0)}{Δy}
limΔy→0Δyf(x0,y0+Δy)−f(x0,y0)
存在,则称此极限为函数 f(x,y)在点 (x0,y0)处对 y的偏导数,记作:
∂
f
∂
y
∣
(
x
0
,
y
0
)
或
f
y
′
(
x
0
,
y
0
)
\dfrac{∂f}{∂y}∣(x_0,y_0)或f'_y(x_0,y_0)
∂y∂f∣(x0,y0)或fy′(x0,y0)
偏导数的计算方法
对于二元函数z=f(x,y),求z对x的偏导数时,将y看作常量,对x求导;求z对y的偏导数时,将x看作常量,对y求导。
6.3.全微分
定义
如果函数z=f(x, y)在点(x, y)处的全增量
Δ
z
=
f
(
x
+
Δ
x
,
y
+
Δ
y
)
−
f
(
x
,
y
)
Δz=f(x+Δx,y+Δy)-f(x,y)
Δz=f(x+Δx,y+Δy)−f(x,y)
可以表示为
Δ
z
=
A
Δ
x
+
B
Δ
y
+
o
(
ρ
)
Δz=AΔx+BΔy+o(ρ)
Δz=AΔx+BΔy+o(ρ)
,其中A、B不依赖于Δx, Δy,仅与x, y有关,ρ趋近于0(ρ=√[(Δx)²+(Δy)²]),此时称函数z=f(x, y)在点(x, y)处可微分,AΔx+BΔy称为函数z=f(x, y)在点(x, y)处的全微分,记为dz即dz=AΔx +BΔy。
可微的必要条件条件
若z=f(x,y)在(x,y)点处可微,则偏导数
f
x
′
(
x
,
y
)
和
f
y
′
(
x
,
y
)
f_{x}'(x,y)和f_{y}'(x,y)
fx′(x,y)和fy′(x,y)
存在,并且
d
z
=
f
x
′
(
x
,
y
)
Δ
x
+
f
y
′
(
x
,
y
)
Δ
y
或
d
z
=
f
x
′
(
x
,
y
)
d
x
+
f
y
′
(
x
,
y
)
d
x
dz=f_{x}'(x,y)Δx+f_{y}'(x,y)Δy或dz=f_{x}'(x,y)dx+f_{y}'(x,y)dx
dz=fx′(x,y)Δx+fy′(x,y)Δy或dz=fx′(x,y)dx+fy′(x,y)dx
可微的充分条件
z=f(x,y)在(x,y)的某个邻域内有连续的偏导数
f
x
′
(
x
,
y
)
和
f
y
′
(
x
,
y
)
f_{x}'(x,y)和f_{y}'(x,y)
fx′(x,y)和fy′(x,y)
则在(x,y)处可微,
d
z
=
f
x
′
(
x
,
y
)
Δ
x
+
f
y
′
(
x
,
y
)
Δ
y
或
d
z
=
f
x
′
(
x
,
y
)
d
x
+
f
y
′
(
x
,
y
)
d
x
dz=f_{x}'(x,y)Δx+f_{y}'(x,y)Δy或dz=f_{x}'(x,y)dx+f_{y}'(x,y)dx
dz=fx′(x,y)Δx+fy′(x,y)Δy或dz=fx′(x,y)dx+fy′(x,y)dx
6.4.梯度
梯度是一个向量,表示多元函数在某一点处的最大变化率和变化方向。
定义
设 f(x1,x2,…,xn)是一个定义在 Rn(n维欧几里得空间) 上的多元函数,函数 f在n维向量点 a=(a1,a2,…,an)处的梯度定义为:
∇
f
(
a
)
=
(
∂
f
∂
x
1
(
a
)
,
∂
f
∂
x
2
(
a
)
,
…
,
∂
f
∂
x
n
(
a
)
)
∇f(a)=(\dfrac{∂f}{∂x_1}(a),\dfrac{∂f}{∂x_2}(a),…,\dfrac{∂f}{∂x_n}(a))
∇f(a)=(∂x1∂f(a),∂x2∂f(a),…,∂xn∂f(a))
其中,
∂
f
∂
x
i
(
a
)
\dfrac{∂f}{∂x_i}(a)
∂xi∂f(a)
是函数 f 在点 a 处对第 i 个自变量的偏导数。
性质
- 最大变化率:梯度 ∇f(a) 的方向是函数 f在点 a 处变化率最大的方向。
- 变化率:梯度 ∇f(a) 的大小(模)是函数 f 在点 a 处沿梯度方向的变化率。
沿梯度方向是是函数 f在点 a 处变化率增加最大的方向;沿梯度反方向是是函数 f在点 a 处变化率减小最大的方向;沿梯度垂直方向函数 f在点 a 处变化率为0。
梯度下降
梯度下降是一种优化算法,用于寻找多元函数的最小值。其基本思想是沿着函数的负梯度方向逐步更新参数,以减少函数值。
算法步骤
-
初始化:选择一个初始点 x0。
-
迭代更新:对于每次迭代 k,计算当前点的梯度
∇ f ( x k ) ∇f(x_k) ∇f(xk)
,并更新参数:
x k + 1 = x k − η ∇ f ( x k ) x_{k+1}=x_k−η∇f(x_k) xk+1=xk−η∇f(xk)
其中,η 是学习率(步长),控制每次更新的步幅。 -
终止条件:当梯度的模足够小或达到预设的迭代次数时,停止迭代。通常,终止条件可以是以下几种:
-
梯度的模足够小:当梯度的模(或范数)
∥ ∇ f ( x k ) ∥ ∥∇f(xk)∥ ∥∇f(xk)∥
小于某个阈值时,停止迭代。说明:
梯度的范数表示梯度向量的大小,即梯度向量的长度。
梯度的范数(模) ∥∇f(xk)∥是这个向量的欧几里得长度,定义为:
∣ ∣ ∇ f ( x k ) ∣ ∣ = ( ∂ f ∂ x 1 ) 2 + ( ∂ f ∂ x 2 ) 2 + ⋯ + ( ∂ f ∂ x n ) 2 ||∇f(x_k)||=\sqrt{(\dfrac{∂f}{∂x_1})^2+(\dfrac{∂f}{∂x_2})^2+⋯+(\dfrac{∂f}{∂x_n})^2} ∣∣∇f(xk)∣∣=(∂x1∂f)2+(∂x2∂f)2+⋯+(∂xn∂f)2 -
达到预设的迭代次数:当迭代次数达到预设的最大迭代次数时,停止迭代。
-
函数值变化足够小:当函数值的变化
∣ f ( x k + 1 ) − f ( x k ) ∣ ∣f(x_{k+1})−f(x_k)∣ ∣f(xk+1)−f(xk)∣
小于某个阈值时,停止迭代。
-
学习率
学习率 η是一个重要的超参数,控制着每次更新的步幅。选择合适的学习率对于梯度下降算法的性能至关重要:
- 学习率过大:如果步幅过大,算法可能会“跳过”最优解,导致在最优解附近来回震荡。
- 学习率过小:可能导致算法收敛速度过慢。
6.5.二重积分
二重积分是多元微积分中的一个重要概念,用于计算二维区域上的函数积分。它通常用于计算平面区域上的面积、质量、重心等问题。二
重积分的基本思想是将一个二维区域分割成无数个小区域,然后在每个小区域上计算函数值的积分。
定义
设 f(x,y)f(x,y) 是定义在平面区域 D 上的函数,二重积分记作:
∬
D
f
(
x
,
y
)
d
A
∬_Df(x,y) dA
∬Df(x,y) dA
其中 dA表示面积元素。
几何意义
如果 f(x,y)是非负函数,二重积分
∬
D
f
(
x
,
y
)
d
A
∬_Df(x,y) dA
∬Df(x,y) dA
表示以 D 为底、以 f(x,y)为顶的曲顶柱体的体积。
二重积分的计算步骤-直角坐标系
在直角坐标系下,二重积分可以表示为两个定积分的乘积:
∬
D
f
(
x
,
y
)
d
A
=
∫
a
b
∫
g
(
x
)
h
(
x
)
f
(
x
,
y
)
d
y
d
x
∬_Df(x,y) dA=∫_a^b∫_{g(x)}^{h(x)}f(x,y) dy dx
∬Df(x,y) dA=∫ab∫g(x)h(x)f(x,y) dy dx
其中 D 是由 x=a 到 x=b 以及 y=g(x)到 y=h(x) 围成的区域。
-
确定积分区域 D:首先,你需要确定积分区域 D的边界。这个区域可以是矩形、圆形、多边形等。
-
设置积分限:根据积分区域 D,设置积分的限。例如,对于直角坐标系中的矩形区域,积分限通常是 a≤x≤b 和 c≤y≤d。
-
写出积分表达式:根据积分限写出二重积分的表达式:
∫ a b ∫ g ( x ) h ( x ) f ( x , y ) d y d x = ∫ a b d x ∫ g ( x ) h ( x ) f ( x , y ) d y ∫_a^b∫_{g(x)}^{h(x)}f(x,y) dy dx=∫_a^bdx∫_{g(x)}^{h(x)}f(x,y) dy ∫ab∫g(x)h(x)f(x,y) dy dx=∫abdx∫g(x)h(x)f(x,y) dy -
计算内层积分:先对 y 进行积分,得到关于 x 的表达式。
-
计算外层积分:再对 x 进行积分,得到最终的积分值。
二重积分的计算步骤-极坐标系
极坐标系的二重积分计算步骤同直角坐标系,不同的是需要将直角坐标系的坐标转换为极坐标。
极坐标系的基本概念
- 原点:极坐标系的原点称为极点(通常记作 O)。
- 极径:从极点到某一点的距离称为径向距离(通常记作 r)。
- 极角:从极点到某一点的射线与极轴(通常是正 xx 轴)之间的角度称为极角(通常记作 θ)。
给定点的极坐标 (r,θ),可以转换为直角坐标 (x,y):
x
=
r
c
o
s
θ
y
=
r
s
i
n
θ
x=rcosθ\\ y=rsinθ
x=rcosθy=rsinθ
在极坐标下,二重积分的表达式为:
∬
D
f
(
x
,
y
)
d
A
=
∬
D
f
(
r
,
θ
)
r
d
r
d
θ
∬_Df(x,y) dA=∬_Df(r,θ) r dr dθ
∬Df(x,y) dA=∬Df(r,θ) r dr dθ
其中 r 和 θ 分别是极径和极角。
注意:转换为极坐标系的二重积分中需要多加一个r ,这个最容易忘记。