积分与多元函数 高数复习笔记

4.不定积分

4.1.定义

如果函数 F(x) 满足 F′(x)=f(x),则称 F(x) 是 f(x) 的一个原函数。不定积分
∫ f ( x )   d x \int f(x) dx f(x)dx
表示 f(x) 的所有原函数,通常写成:

∫ f ( x )   d x = F ( x ) + C \int f(x) dx=F(x)+C f(x)dx=F(x)+C
其中,C是积分常数,表示原函数的不确定性。 f(x)是被积函数,dx表示对 x 的积分变量。

不定积分的结果是一个函数簇,而不是一个具体的数值。其几何含义是一组平行的曲线簇。

4.2.基本积分公式

  1. 常数积分
    ∫ k   d x = k x + C ( 其中 k 是常数 ) ∫k dx=kx+C(其中 k 是常数) kdx=kx+C(其中k是常数)

  2. 幂函数积分
    ∫ x n   d x = x n + 1 n + 1 + C ( 其中 n ≠ − 1 ) ∫x^{n} dx=\dfrac{x^{n+1}}{n+1}+C(其中 n≠−1) xndx=n+1xn+1+C(其中n=1)

  3. 指数函数积分
    ∫ e x   d x = e x + C ∫e^{x} dx=e^{x}+C exdx=ex+C

    ∫ a x   d x = a x l n ⁡ a + C ( 其中 a > 0 且 a ≠ 1 ) ∫a^{x} dx=\dfrac{a^{x}}{ln⁡a}+C(其中 a>0 且 a≠1) axdx=lnaax+C(其中a>0a=1)

  4. 对数函数积分
    ∫ 1 x   d x = l n ⁡ ∣ x ∣ + C ∫\dfrac{1}{x} dx=ln⁡∣x∣+C x1dx=lnx+C

  5. 三角函数积分
    ∫ s i n ⁡ x   d x = − c o s ⁡ x + C ∫sin⁡x dx=−cos⁡x+C sinxdx=cosx+C

    ∫ c o s ⁡ x   d x = s i n ⁡ x + C ∫cos⁡x dx=sin⁡x+C cosxdx=sinx+C

  6. 反三角函数积分
    ∫ 1 1 − x 2   d x = a r c s i n ⁡ x + C ∫\dfrac{1}{\sqrt{1−x^{2}}} dx=arcsin⁡x+C 1x2 1dx=arcsinx+C

    ∫ 1 1 + x 2   d x = a r c t a n ⁡ x + C ∫\dfrac{1}{1+x^{2}} dx=arctan⁡x+C 1+x21dx=arctanx+C

4.3.换元积分法

4.3.1 第一类换元积分法

  1. 选择合适的变量替换:
    选择一个合适的变量替换 u=g(x),使得积分变得更简单。

  2. 求导数:
    求 u 对 x 的导数
    d u d x = g ′ ( x ) \dfrac{du}{dx}=g′(x) dxdu=g(x)
    ,并将其改写为
    d u = g ′ ( x )   d x du=g′(x) dx du=g(x)dx

  3. 替换积分变量:
    将原积分中的 x 替换为 u,并将 dx 替换为
    d u g ′ ( x ) \dfrac{du}{g′(x)} g(x)du

  4. 求解新积分:
    求解新的积分
    ∫ f ( u )   d u ∫f(u) du f(u)du

  5. 回代变量:
    将 u 回代为 g(x),得到最终的不定积分结果。

简单理解就是观察函数,将d前边的某一部分求原函数,然后放到d的里面。

4.3.2 第二类换元积分法

第二类换元积分法通常涉及三角函数替换或带根号形式的替换。

  1. 选择合适的变量替换:
    选择一个合适的变量替换 x=g(t),使得积分变得更简单。

  2. 求导数:
    求 x 对 t 的导数
    d x d t = g ′ ( t ) \dfrac{dx}{dt}=g′(t) dtdx=g(t)
    ,并将其改写为
    d x = g ′ ( t )   d t dx=g′(t) dt dx=g(t)dt

  3. 替换积分变量:
    将原积分中的 x 替换为 g(t),并将 dx替换为 g′(t) dt。

  4. 求解新积分:
    求解新的积分
    ∫ f ( g ( t ) ) g ′ ( t )   d t ∫f(g(t))g′(t) dt f(g(t))g(t)dt

  5. 回代变量:
    将 t 回代为
    g − 1 ( x ) g^{−1}(x) g1(x)
    ,得到最终的不定积分结果。

简单理解就是将变量替换 x=g(t),对dx求出dt,然后对t进行积分,最后将t换回x。

5.定积分

定积分是微积分中的一个重要概念,用于求解函数在某个区间上的累积效应或面积。

5.1.定义

定积分
∫ a b f ( x )   d x ∫_{a}^{b}f(x) dx abf(x)dx
表示函数 f(x)在区间 [a,b]上的累积效应或面积。定积分的定义可以通过以下步骤来理解:

  1. 分割区间
    将区间 [a,b]分割成 n 个小区间,每个小区间的长度为 Δxi,其中
    Δ x i = x i − x i − 1 Δx_{i}=x_{i}−x_{i−1} Δxi=xixi1
    ,且 x0=a,xn=b。

  2. 取样本点
    在每个小区间
    [ x i − 1 , x i ] [x_{i−1},x_{i}] [xi1,xi]
    内取一个样本点 ξi。

  3. 构造黎曼和
    构造黎曼和
    ∑ i = 1 n f ( ξ i ) Δ x i \sum _{i=1}^{n}f(ξ_{i})Δx_i i=1nf(ξi)Δxi
    ,表示函数 f(x) 在区间 [a,b]上的近似累积效应或面积。

  4. 取极限
    当分割的区间数 n 趋向于无穷大,且每个小区间的长度 Δxi趋向于零时,黎曼和的极限即为定积分:
    ∫ a b f ( x )   d x = lim ⁡ n → ∞ ∑ i = 1 n f ( ξ i ) Δ x i ∫_{a}^{b}f(x) dx=\lim _{n\rightarrow \infty}\sum _{i=1}^{n}f(ξ_{i})Δx_{i} abf(x)dx=nlimi=1nf(ξi)Δxi

说明:

黎曼和是通过将区间 [a,b]分成 n 个等宽的子区间,每个子区间的宽度为
Δ x = b − a n Δx=\dfrac{b−a}{n} Δx=nba
,然后选择每个子区间内的一点 xi,计算矩形的面积之和来近似积分的。

黎曼和可以表示为:
S n = ∑ i = 1 n f ( x i ) Δ x S_n=∑_{i=1}^nf(x_i)Δx Sn=i=1nf(xi)Δx
其中:

  • Sn是黎曼和的值。
  • n是子区间的数量。
  • xi是第 i个子区间 [xi−1,xi]内的一点。
  • Δx是每个子区间的宽度。

以上定义的几何图形:

5.2.几何意义

定积分
∫ a b f ( x )   d x ∫_{a}^{b}f(x) dx abf(x)dx
的几何意义是函数 f(x) 在区间 [a,b]上的曲线下面积。具体来说:

  • 如果 f(x)≥0,则定积分表示曲线下方的面积。
  • 如果 f(x)≤0,则定积分表示曲线上方的面积的负值。

5.3.性质

定积分具有以下重要性质:

  1. 线性性质:
    ∫ a b [ c f ( x ) + d g ( x ) ]   d x = c ∫ a b f ( x )   d x + d ∫ a b g ( x )   d x ∫_{a}^{b}[cf(x)+dg(x)] dx=c∫_{a}^{b}f(x) dx+d∫_{a}^{b}g(x) dx ab[cf(x)+dg(x)]dx=cabf(x)dx+dabg(x)dx
    其中 c 和 d 是常数。

  2. 区间可加性:
    ∫ a b f ( x )   d x = ∫ a c f ( x )   d x + ∫ c b f ( x )   d x ∫_{a}^{b}f(x) dx=∫_{a}^{c}f(x) dx+∫_{c}^{b}f(x) dx abf(x)dx=acf(x)dx+cbf(x)dx
    其中 a≤c≤b。

  3. 积分上下限交换:
    ∫ a b f ( x )   d x = − ∫ b a f ( x )   d x ∫_{a}^{b}f(x) dx=−∫_{b}^{a}f(x) dx abf(x)dx=baf(x)dx

  4. 定积分中值定理

    如果函数 f(x) 在闭区间 [a,b] 上连续,则存在 c∈[a,b],使得:

∫ a b f ( x )   d x = f ( c ) ( b − a ) ∫_{a}^{b}f(x) dx=f(c)(b−a) abf(x)dx=f(c)(ba)

证明:

设f(x)在[a,b]上连续,因为闭区间上连续函数必有最大最小值,不妨设最大值为M,最小值为m,最大值和最小值可相等。

m ≤ f ( x ) ≤ M m\leq f(x)\leq M mf(x)M
两边同时积分可得:
m ( b − a ) ≤ ∫ a b f ( x ) d x ≤ M ( b − a ) m(b-a)\leq \int _{a}^{b}f(x)dx\leq M(b-a) m(ba)abf(x)dxM(ba)
同除以b-a从而得到:
m ≤ 1 ( b − a ) ∫ a b f ( x ) d x ≤ M m\leq \dfrac{1}{(b-a)}\int _{a}^{b}f(x)dx\leq M m(ba)1abf(x)dxM
由连续函数的介值定理可知,必定
∃ c ∈ [ a , b ] \exists c\in [a,b] c[a,b]
,使得
f ( c ) = 1 ( b − a ) ∫ a b f ( x ) d x f(c)=\dfrac{1}{(b-a)}\int _{a}^{b}f(x)dx f(c)=(ba)1abf(x)dx
,即:
∫ a b f ( x ) d x = f ( c ) ( b − a ) , ∃ c ∈ [ a , b ] \int _{a}^{b}f(x)dx=f(c)(b-a),\exists c\in [a,b] abf(x)dx=f(c)(ba),c[a,b]

5.4.微积分基本公式

牛顿-莱布尼茨公式
∫ a b f ( x ) d x = F ( b ) − F ( a ) ∫_{a}^{b}f(x)dx=F(b)−F(a) abf(x)dx=F(b)F(a)

其中, F ( x ) 是 f ( x ) 的一个原函数,即 F ′ ( x ) = f ( x ) 。 其中,F(x)是 f(x)的一个原函数,即 F′(x)=f(x)。 其中,F(x)f(x)的一个原函数,即F(x)=f(x)

微积分基本定理

微积分基本定理分为两部分,分别描述了积分上限函数的性质和定积分的基本公式。

第一部分(Part 1)

如果 f(t) 在区间 [a,b]上连续,则积分上限函数
F ( x ) = ∫ a x f ( t )   d t F(x)=∫_{a}^{x}f(t) dt F(x)=axf(t)dt
在区间 [a,b] 上可导,并且其导数为:

F ′ ( x ) = f ( x ) F′(x)=f(x) F(x)=f(x)
第一基本定理表明不定积分是微分的逆运算,保证了某连续函数的原函数的存在性。

第二部分(Part 2)

如果 F(x)是 f(x)的一个原函数,即 F′(x)=f(x),则:
∫ a b f ( x )   d x = F ( b ) − F ( a ) ∫_{a}^{b}f(x) dx=F(b)−F(a) abf(x)dx=F(b)F(a)
第二基本定理则提供了定积分和不定积分之间的联系,使得定积分的计算变得简便。

5.5.定积分换元法

步骤

  1. 选择合适的变量替换:
    选择一个合适的变量替换 t=g(x),使得积分变得更简单,并求反函数:

x = g − 1 ( t ) = h ( t ) x=g^{-1}(t)=h(t) x=g1(t)=h(t)

  1. 求导数:
    对 x 的导数

d x = h ′ ( t ) d t dx=h'(t)dt dx=h(t)dt

  1. 替换积分变量:
    将原积分中的 x 替换为 t,并将 dx 替换为

h ′ ( t ) d t h'(t)dt h(t)dt

  1. 确定新的积分上下限:
    将原积分的上下限 a 和 b 替换为新的上下限 t 的值。即 t 的下限为 t1,上限为 t2。

  2. 求解新积分:
    求解新的定积分

∫ t 1 t 2 f ( h ( t ) )   h ′ ( t ) d t ∫_{t_{1}}^{t_{2}}f(h(t)) h'(t)dt t1t2f(h(t))h(t)dt

6.多元函数

6.1.二元极限

定义

设函数 f(x,y) 在点 (a,b) 的某个去心邻域内有定义。如果对于任意给定的正数 ϵ,总存在正数 δ,使得当
0 < ( x − a ) 2 + ( y − b ) 2 < δ 0<\sqrt{(x−a)^2+(y−b)^2}<δ 0<(xa)2+(yb)2 <δ
时,总有:

∣f(x,y)−L∣<ϵ

则称 L 为函数 f(x,y)在点 (a,b)处的极限,记作:
lim ⁡ ⁡ ( x , y ) → ( a , b ) f ( x , y ) = L \lim⁡ _{(x,y)\rightarrow (a,b)}f(x,y)=L lim(x,y)(a,b)f(x,y)=L
几何意义

当点 (x,y)从任意方式趋近于点 (a,b) 时,函数 f(x,y) 的值趋近于 L。换句话说,函数图像在二维平面的点 (a,b)附近趋近于一个三维立体平面上的点 (a,b,L)。可将(a,b)想象为(a,b,L)投影在二维平面的点。

如果 (x,y)从不同方式趋近于点 (a,b),函数 f(x,y) 的值不相等,则表示 f(x,y) 不存在。

6.2.偏导数

‌偏导数是‌多元函数求导的一种形式,表示在多个自变量中,当其中一个自变量改变而其他自变量保持不变时函数值的变化率。

这实质上是将其他自变量视为常数,然后按照单变量函数求导的方法进行运算。‌

定义

设函数 f(x,y) 在点 (x0,y0) 的某个邻域内有定义。如果极限:
lim ⁡ ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x \lim_{⁡Δx→0}\dfrac{f(x_0+Δx,y_0)−f(x_0,y_0)}{Δx} ⁡Δx0limΔxf(x0+Δx,y0)f(x0,y0)
存在,则称此极限为函数 f(x,y)在点 (x0,y0) 处对 x 的偏导数,记作:
∂ f ∂ x ∣ ( x 0 , y 0 ) 或 f x ′ ( x 0 , y 0 ) \dfrac{∂f}{∂x}∣(x_0,y_0)或f'_x(x_0,y_0) xf(x0,y0)fx(x0,y0)
类似地,如果极限:
lim ⁡ ⁡ Δ y → 0 f ( x 0 , y 0 + Δ y ) − f ( x 0 , y 0 ) Δ y \lim⁡ _{Δy→0}\dfrac{f(x_0,y_0+Δy)−f(x_0,y_0)}{Δy} limΔy0Δyf(x0,y0+Δy)f(x0,y0)
存在,则称此极限为函数 f(x,y)在点 (x0,y0)处对 y的偏导数,记作:
∂ f ∂ y ∣ ( x 0 , y 0 ) 或 f y ′ ( x 0 , y 0 ) \dfrac{∂f}{∂y}∣(x_0,y_0)或f'_y(x_0,y_0) yf(x0,y0)fy(x0,y0)
偏导数的计算方法‌

对于二元函数z=f(x,y),求z对x的偏导数时,将y看作常量,对x求导;求z对y的偏导数时,将x看作常量,对y求导。

6.3.全微分

定义

如果函数z=f(x, y)在点(x, y)处的全增量
Δ z = f ( x + Δ x , y + Δ y ) − f ( x , y ) Δz=f(x+Δx,y+Δy)-f(x,y) Δz=f(x+Δx,y+Δy)f(x,y)
可以表示为
Δ z = A Δ x + B Δ y + o ( ρ ) Δz=AΔx+BΔy+o(ρ) Δz=AΔx+BΔy+o(ρ)
,其中A、B不依赖于Δx, Δy,仅与x, y有关,ρ趋近于0(ρ=√[(Δx)²+(Δy)²]),此时称函数z=f(x, y)在点(x, y)处可微分,AΔx+BΔy称为函数z=f(x, y)在点(x, y)处的全微分,记为dz即dz=AΔx +BΔy。

可微的必要条件条件

若z=f(x,y)在(x,y)点处可微,则偏导数
f x ′ ( x , y ) 和 f y ′ ( x , y ) f_{x}'(x,y)和f_{y}'(x,y) fx(x,y)fy(x,y)
存在,并且
d z = f x ′ ( x , y ) ⁡ Δ x + f y ′ ( x , y ) ⁡ Δ y 或 d z = f x ′ ( x , y ) d x + f y ′ ( x , y ) ⁡ d x dz=f_{x}'(x,y)⁡Δx+f_{y}'(x,y)⁡Δy或dz=f_{x}'(x,y)dx+f_{y}'(x,y)⁡dx dz=fx(x,y)⁡Δx+fy(x,y)⁡Δydz=fx(x,y)dx+fy(x,y)dx
可微的充分条件

z=f(x,y)在(x,y)的某个邻域内有连续的偏导数
f x ′ ( x , y ) 和 f y ′ ( x , y ) f_{x}'(x,y)和f_{y}'(x,y) fx(x,y)fy(x,y)
则在(x,y)处可微,
d z = f x ′ ( x , y ) ⁡ Δ x + f y ′ ( x , y ) ⁡ Δ y 或 d z = f x ′ ( x , y ) d x + f y ′ ( x , y ) ⁡ d x dz=f_{x}'(x,y)⁡Δx+f_{y}'(x,y)⁡Δy或dz=f_{x}'(x,y)dx+f_{y}'(x,y)⁡dx dz=fx(x,y)⁡Δx+fy(x,y)⁡Δydz=fx(x,y)dx+fy(x,y)dx

6.4.梯度

梯度是一个向量,表示多元函数在某一点处的最大变化率和变化方向。

定义

设 f(x1,x2,…,xn)是一个定义在 Rn(n维欧几里得空间) 上的多元函数,函数 f在n维向量点 a=(a1,a2,…,an)处的梯度定义为:
∇ f ( a ) = ( ∂ f ∂ x 1 ( a ) , ∂ f ∂ x 2 ( a ) , … , ∂ f ∂ x n ( a ) ) ∇f(a)=(\dfrac{∂f}{∂x_1}(a),\dfrac{∂f}{∂x_2}(a),…,\dfrac{∂f}{∂x_n}(a)) f(a)=(x1f(a),x2f(a),,xnf(a))
其中,
∂ f ∂ x i ( a ) \dfrac{∂f}{∂x_i}(a) xif(a)
是函数 f 在点 a 处对第 i 个自变量的偏导数。

性质

  1. 最大变化率:梯度 ∇f(a) 的方向是函数 f在点 a 处变化率最大的方向。
  2. 变化率:梯度 ∇f(a) 的大小(模)是函数 f 在点 a 处沿梯度方向的变化率。

沿梯度方向是是函数 f在点 a 处变化率增加最大的方向;沿梯度反方向是是函数 f在点 a 处变化率减小最大的方向;沿梯度垂直方向函数 f在点 a 处变化率为0。

梯度下降

梯度下降是一种优化算法,用于寻找多元函数的最小值。其基本思想是沿着函数的负梯度方向逐步更新参数,以减少函数值。

算法步骤

  1. 初始化:选择一个初始点 x0。

  2. 迭代更新:对于每次迭代 k,计算当前点的梯度
    ∇ f ( x k ) ∇f(x_k) f(xk)
    ,并更新参数:
    x k + 1 = x k − η ∇ f ( x k ) x_{k+1}=x_k−η∇f(x_k) xk+1=xkηf(xk)
    其中,η 是学习率(步长),控制每次更新的步幅。

  3. 终止条件:当梯度的模足够小或达到预设的迭代次数时,停止迭代。通常,终止条件可以是以下几种:

    1. 梯度的模足够小:当梯度的模(或范数)
      ∥ ∇ f ( x k ) ∥ ∥∇f(xk)∥ ∥∇f(xk)
      小于某个阈值时,停止迭代。

      说明:

      梯度的范数表示梯度向量的大小,即梯度向量的长度。

      梯度的范数(模) ∥∇f(xk)∥是这个向量的欧几里得长度,定义为:
      ∣ ∣ ∇ f ( x k ) ∣ ∣ = ( ∂ f ∂ x 1 ) 2 + ( ∂ f ∂ x 2 ) 2 + ⋯ + ( ∂ f ∂ x n ) 2 ||∇f(x_k)||=\sqrt{(\dfrac{∂f}{∂x_1})^2+(\dfrac{∂f}{∂x_2})^2+⋯+(\dfrac{∂f}{∂x_n})^2} ∣∣∇f(xk)∣∣=(x1f)2+(x2f)2++(xnf)2

    2. 达到预设的迭代次数:当迭代次数达到预设的最大迭代次数时,停止迭代。

    3. 函数值变化足够小:当函数值的变化
      ∣ f ( x k + 1 ) − f ( x k ) ∣ ∣f(x_{k+1})−f(x_k)∣ f(xk+1)f(xk)
      小于某个阈值时,停止迭代。

学习率

学习率 η是一个重要的超参数,控制着每次更新的步幅。选择合适的学习率对于梯度下降算法的性能至关重要:

  • 学习率过大:如果步幅过大,算法可能会“跳过”最优解,导致在最优解附近来回震荡。
  • 学习率过小:可能导致算法收敛速度过慢。

6.5.二重积分

二重积分是多元微积分中的一个重要概念,用于计算二维区域上的函数积分。它通常用于计算平面区域上的面积、质量、重心等问题。二

重积分的基本思想是将一个二维区域分割成无数个小区域,然后在每个小区域上计算函数值的积分。

定义

设 f(x,y)f(x,y) 是定义在平面区域 D 上的函数,二重积分记作:
∬ D f ( x , y )   d A ∬_Df(x,y) dA Df(x,y)dA

其中 dA表示面积元素。

几何意义

如果 f(x,y)是非负函数,二重积分
∬ D f ( x , y )   d A ∬_Df(x,y) dA Df(x,y)dA
表示以 D 为底、以 f(x,y)为顶的曲顶柱体的体积。

二重积分的计算步骤-直角坐标系

在直角坐标系下,二重积分可以表示为两个定积分的乘积:
∬ D f ( x , y )   d A = ∫ a b ∫ g ( x ) h ( x ) f ( x , y )   d y   d x ∬_Df(x,y) dA=∫_a^b∫_{g(x)}^{h(x)}f(x,y) dy dx Df(x,y)dA=abg(x)h(x)f(x,y)dydx

其中 D 是由 x=a 到 x=b 以及 y=g(x)到 y=h(x) 围成的区域。

  1. 确定积分区域 D:首先,你需要确定积分区域 D的边界。这个区域可以是矩形、圆形、多边形等。

  2. 设置积分限:根据积分区域 D,设置积分的限。例如,对于直角坐标系中的矩形区域,积分限通常是 a≤x≤b 和 c≤y≤d。

  3. 写出积分表达式:根据积分限写出二重积分的表达式:
    ∫ a b ∫ g ( x ) h ( x ) f ( x , y )   d y   d x = ∫ a b d x ∫ g ( x ) h ( x ) f ( x , y )   d y   ∫_a^b∫_{g(x)}^{h(x)}f(x,y) dy dx=∫_a^bdx∫_{g(x)}^{h(x)}f(x,y) dy  abg(x)h(x)f(x,y)dydx=abdxg(x)h(x)f(x,y)dy

  4. 计算内层积分:先对 y 进行积分,得到关于 x 的表达式。

  5. 计算外层积分:再对 x 进行积分,得到最终的积分值。

二重积分的计算步骤-极坐标系

极坐标系的二重积分计算步骤同直角坐标系,不同的是需要将直角坐标系的坐标转换为极坐标。

极坐标系的基本概念

  • 原点:极坐标系的原点称为极点(通常记作 O)。
  • 极径:从极点到某一点的距离称为径向距离(通常记作 r)。
  • 极角:从极点到某一点的射线与极轴(通常是正 xx 轴)之间的角度称为极角(通常记作 θ)。

给定点的极坐标 (r,θ),可以转换为直角坐标 (x,y):
x = r c o s ⁡ θ y = r s i n ⁡ θ x=rcos⁡θ\\ y=rsin⁡θ x=rcosθy=rsinθ
在极坐标下,二重积分的表达式为:
∬ D f ( x , y )   d A = ∬ D f ( r , θ )   r   d r   d θ ∬_Df(x,y) dA=∬_Df(r,θ) r dr dθ Df(x,y)dA=Df(r,θ)rdrdθ
其中 r 和 θ 分别是极径和极角。

注意:转换为极坐标系的二重积分中需要多加一个r ,这个最容易忘记。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值