ResNet改进(32):MogaNet与ResNet34混合架构详解

1.概述

本文档详细分析了一个结合了MogaNet模块与传统ResNet34架构的混合神经网络实现。

该架构旨在通过引入MogaBlock(Multi-Operation Gated Attention Block)来增强传统残差网络的表达能力,同时保持ResNet的优秀特性如梯度流动和训练稳定性。

架构组成

1. MogaBlock (第一个实现)

第一个MogaBlock实现包含以下核心组件:

  1. 局部特征提取:使用深度可分离卷积(Depthwise Separable Conv)捕获局部特征

    • 深度卷积(3x3 kernel) + 点卷积(1x1 kernel)

    • 批归一化(BatchNorm)和GELU激活

  2. 全局上下文分支:使用大核卷积(5x5)捕获全局上下文

    • 类似局部分支的结构但使用更大的卷积核

  3. 特征门控机制

    • 通道注意力

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点我头像干啥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值