1.概述
本文档详细分析了一个结合了MogaNet模块与传统ResNet34架构的混合神经网络实现。
该架构旨在通过引入MogaBlock(Multi-Operation Gated Attention Block)来增强传统残差网络的表达能力,同时保持ResNet的优秀特性如梯度流动和训练稳定性。
架构组成
1. MogaBlock (第一个实现)
第一个MogaBlock实现包含以下核心组件:
-
局部特征提取:使用深度可分离卷积(Depthwise Separable Conv)捕获局部特征
-
深度卷积(3x3 kernel) + 点卷积(1x1 kernel)
-
批归一化(BatchNorm)和GELU激活
-
-
全局上下文分支:使用大核卷积(5x5)捕获全局上下文
-
类似局部分支的结构但使用更大的卷积核
-
-
特征门控机制:
-
通道注意力
-