1.创新点分析
在计算机视觉领域,ResNet因其优秀的性能和可扩展性成为了经典的卷积神经网络架构。本文将介绍一种改进的ResNet模型,它通过集成选择性核卷积(SKConv)和卷积块注意力模块(CBAM)来增强特征提取能力。
模型架构概述
这个自定义的ResNet模型基于标准的ResNet34架构,但加入了两种先进的注意力机制:
-
SKConv (Selective Kernel Convolution) - 动态调整感受野大小
-
CBAM (Convolutional Block Attention Module) - 结合通道和空间注意力
模型的核心思想是在ResNet的每个残差块后插入这些注意力模块,使网络能够自适应地关注更重要的特征。
关键技术组件
1. SKConv模块
SKConv实现了选择性核机制,允许网络自适应地选择不同大小的感受野:
class SKConv(nn.Module):
def __init__(self, features, M=2, G