ResNet改进(50):SKConv和CBAM增强的ResNet模型

1.创新点分析

在计算机视觉领域,ResNet因其优秀的性能和可扩展性成为了经典的卷积神经网络架构。本文将介绍一种改进的ResNet模型,它通过集成选择性核卷积(SKConv)和卷积块注意力模块(CBAM)来增强特征提取能力。

模型架构概述

这个自定义的ResNet模型基于标准的ResNet34架构,但加入了两种先进的注意力机制:

  1. SKConv (Selective Kernel Convolution) - 动态调整感受野大小

  2. CBAM (Convolutional Block Attention Module) - 结合通道和空间注意力

模型的核心思想是在ResNet的每个残差块后插入这些注意力模块,使网络能够自适应地关注更重要的特征。

关键技术组件

1. SKConv模块

SKConv实现了选择性核机制,允许网络自适应地选择不同大小的感受野:

class SKConv(nn.Module):
    def __init__(self, features, M=2, G
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点我头像干啥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值