EEG(脑电图)脑电情绪分类是利用脑电信号识别和分类人类情绪状态的一项研究领域,随着情感计算和脑机接口技术的发展,情绪识别成为了心理健康监测、智能交互和人机协作中的重要研究课题。传统的情绪分类方法通常依赖于面部表情、语音或生理信号,但这些方法受环境干扰较大,且缺乏对内在情绪状态的直接感知。而EEG作为一种直接反映大脑活动的生理信号,能够实时捕捉到与情绪相关的脑电波变化,因此被广泛应用于情绪分类研究。通过对EEG信号的分析,研究人员可以识别出与不同情绪(如快乐、悲伤、愤怒等)相关的脑电波模式。然而,EEG信号本身具有高噪声、低信噪比和非线性等特点,这给情绪分类带来了挑战。
图神经网络(GNN)是一种基于图结构数据的深度学习方法,能够高效地挖掘节点之间的关联性和结构信息,近年来在处理具有图结构的复杂数据方面取得了显著成果。在EEG脑电情绪分类中,GNN能够有效地建模大脑区域之间的空间关联,捕捉跨通道和跨区域的情绪相关信息,克服传统方法的局限性,提供更加精准的情绪分类结果。通过将EEG信号与GNN结合,研究者可以实现更高效、鲁棒的情绪识别系统,为心理健康监测、情感分析以及人机交互等领域提供重要支持。
欢迎交流合作,代码实现,助力科研!!!
国际 10-20 标准导联分布