14.1k Star!开箱即用,AI 知识库问答系统!

工作中经常被同一个问题问了又问,找不到地方统一记录答案,每次都要重复解释,影响工作效率。

市面上主流工具要么过于复杂,要么功能单一,缺乏专业的问答和知识管理功能,难以满足日常使用需求。

最近发现了 Apache Answer,这款开源问答平台解决了知识管理难题。界面简洁,操作便捷,可以有效整理分散的知识点。

screenshot

核心亮点

Apache Answer 提供了完整的问答功能体系:

  • 精准问答体系:支持问题投票、最佳答案标记,提高内容筛选效率

  • 标签分类管理:通过标签对知识进行分类,形成结构化知识体系

  • 多语言支持:内置多种语言界面,支持国际化交流

  • 权限精细控制:可设置公开、私有或受限访问模式,满足不同场景需求

  • 插件生态系统:提供扩展插件,按需增强平台功能

  • 数据导入导出:支持现有知识库迁移,实现数据互通

  • 自定义域名:支持绑定个人或企业域名,提升专业形象

  • 统计分析功能:提供数据统计功能,展示内容热度和用户参与情况

快速部署

Apache Answer 的安装部署过程简便高效,只需几分钟即可完成。使用 Docker 可通过一行命令实现:

docker run -d -p 9080:80 -v answer-data:/data --name answer apache/answer:1.4.2

对于不使用 Docker 的用户,官方提供了多种系统的安装包,包括 Windows、Mac 和 Linux,下载后按提示安装即可。

image-20250311173319051

安装完成后,访问 http://localhost:9080,按照引导完成管理员账号设置,即可开始使用平台功能。

小贴士:复制关键词 “Answer” 到公众号后台发送,可获取工具相关安装包,能够高速无障碍下载。

实用指南

Apache Answer 平台的初始配置步骤:

  1. 完成管理员账号创建和基础设置

  2. 根据业务需求建立核心标签体系

  3. 设置平台访问权限和用户规则

  4. 导入常见问题和解答内容

平台支持 Markdown 编辑功能和代码高亮显示,适合技术内容的展示和分享。

内置统计工具可分析问题访问量和关注度,有助于优化内容结构。

写在最后

Apache Answer 为知识管理提供了高效的解决方案,显著提升信息查询和分享效率。

适用于内部知识库构建、产品帮助中心搭建和学习资料整理等多种场景,能够提高工作效率和知识复用率。

作为 Apache 基金会支持的开源项目,具备长期稳定的更新和维护保障,为用户提供可靠的知识管理平台。

GitHub 项目地址:https://github.com/apache/answer

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值