微软GraphRAG:从开源到爆火,解锁新一代RAG技术
引言
自2024年7月微软在GitHub上开源了基于图的检索增强生成(RAG)系统——GraphRAG以来,该项目迅速获得了开发者的广泛关注。短短几个月内,GraphRAG在GitHub上的星标数已经突破19000颗,成为目前最热门的RAG框架之一。本文将详细介绍GraphRAG的技术特点、应用场景及其最新进展。
什么是GraphRAG?
GraphRAG是一种基于图的知识检索增强技术,它结合了知识图谱的广泛知识表示能力和大语言模型(LLM)的生成能力。与传统的RAG方法相比,GraphRAG通过构建知识图谱和社区层次结构,显著提升了复杂信息处理的能力。具体来说,GraphRAG的工作流程包括以下几个步骤:
- 从原始文本中提取知识图谱:使用自然语言处理技术从非结构化文本中提取实体和关系。
- 构建社区层次结构:利用图统计方法优化概念图,并提取出层次化的社区结构。
- 为这些社区生成摘要:使用大语言模型为每个社区生成简洁的摘要。
- 执行基于RAG的任务:在进行问答、摘要等任务时,利用上述结构来提高生成结果的质量和准确性。
[图片]