微软GraphRAG:从开源到爆火,解锁新一代RAG技术

微软GraphRAG:从开源到爆火,解锁新一代RAG技术
引言
自2024年7月微软在GitHub上开源了基于图的检索增强生成(RAG)系统——GraphRAG以来,该项目迅速获得了开发者的广泛关注。短短几个月内,GraphRAG在GitHub上的星标数已经突破19000颗,成为目前最热门的RAG框架之一。本文将详细介绍GraphRAG的技术特点、应用场景及其最新进展。
什么是GraphRAG?
GraphRAG是一种基于图的知识检索增强技术,它结合了知识图谱的广泛知识表示能力和大语言模型(LLM)的生成能力。与传统的RAG方法相比,GraphRAG通过构建知识图谱和社区层次结构,显著提升了复杂信息处理的能力。具体来说,GraphRAG的工作流程包括以下几个步骤:

  1. 从原始文本中提取知识图谱:使用自然语言处理技术从非结构化文本中提取实体和关系。
  2. 构建社区层次结构:利用图统计方法优化概念图,并提取出层次化的社区结构。
  3. 为这些社区生成摘要:使用大语言模型为每个社区生成简洁的摘要。
  4. 执行基于RAG的任务:在进行问答、摘要等任务时,利用上述结构来提高生成结果的质量和准确性。
    [图片]

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值