“ Embedding和Rerank模型是RAG系统中的核心模型。”
在RAG系统中,有两个非常重要的模型一个是Embedding模型,另一个则是Rerank模型;这两个模型在RAG中扮演着重要角色。
Embedding模型的作用是把数据向量化,通过降维的方式,使得可以通过欧式距离,余弦函数等计算向量之间的相似度,以此来进行相似度检索。
而Rerank的作用是在Embedding检索的基础之上,进行更加准确的数据筛选;如果说Embedding模型进行的是一维筛选,那么Rerank模型就是从多个维度进行筛选。
Embedding模型和Rerank模型
在自然语言处理和信息检索系统中,Embedding模型和Rerank模型是两类功能不同但常结合使用的技术。
Embedding和Rerank模型都是基于深度学习方式实现的神经网络模型,但由于其功能不同,因此其实现方式和训练方法也有一定的区别。
从使用的角度来看,Embedding一般用于数据向量化并快速检索,而Rerank模型是在快速检索的基础之上进行重排序,提升相似度。
但从技术实现的角度来说,两种模型使用的学习方式和架构是不一样的;原因就在于两个模型的实现目的和处理数据的方式。
它们的核心区别在于目标、应用阶段和技术实现。以下是详细对比:
1. 功能目标
维度 | Embedding模型 | Rerank模型 |
---|---|---|
核心任务 | 将文本转化为低维向量,捕捉语义信息 | 对候选结果重新排序,提升相关性 |
输出形式 | 高维或低维向量(如768维向量) | 候选列表的排序分数(如相关性得分) |
关注点 | 文本的全局语义表示 | 候选结果与查询的细粒度匹配 |
示例
-
Embedding模型:将“如何训练神经网络?”转换为向量,用于检索相似问题。
-
Rerank模型:对初步检索的100个答案排序,将最相关的答案排到前3。
2. 应用阶段
维度 | Embedding模型 | Rerank模型 |
---|---|---|
所处流程 | 检索阶段 :快速生成候选集 | 精排阶段 :优化候选集的顺序 |
数据规模 | 处理海量数据(如百万级文档) | 处理小规模候选集(如Top 100~1000) |
性能要求 | 要求高效(毫秒级响应) | 可接受较高延迟(需复杂计算) |
典型场景
-
Embedding模型:用于搜索引擎的初步召回(如从10亿文档中筛选出Top 1000)。
-
Rerank模型:在推荐系统中对Top 100结果精细化排序,提升点击率。
3. 技术实现
维度 | Embedding模型 | Rerank模型 |
---|---|---|
模型类型 | 无监督/自监督学习(如BERT、Sentence-BERT) | 有监督学习(如Pairwise Ranking、ListNet) |
输入输出 | 单文本输入 → 固定维度向量 | 查询+候选文本对 → 相关性分数 |
特征依赖 | 仅依赖文本本身的语义信息 | 可融合多特征(语义、点击率、时效性等) |
模型举例
-
Embedding模型:
-
通用语义编码:BERT、RoBERTa
-
专用场景:DPR(Dense Passage Retrieval)
-
-
Rerank模型:
-
传统方法:BM25 + 特征工程
-
深度模型:ColBERT、Cross-Encoder
-
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓