快速上车!RAGflow 保姆级安装指南!小白也能轻松搞定!

RAGFlow 是一款开源检索增强生成(RAG, Retrieval-Augmented Generation)引擎,致力于通过深度文档理解技术,帮助用户构建高准确性、高可信度的智能知识库。无论是企业级应用还是个人开发者项目,RAGFlow 都能提供高效、强大的RAG解决方案,使大语言模型(LLM)能够精准解析复杂格式文档,生成可靠回答,并附带清晰可追溯的引用来源,从而提升知识检索与生成的可信度和可用性。

那从今天开始,带来一系列的有关RAGflow的介绍,先从安装开始。(这里面的坑,也是不少啊)

01 代码下载

图片

RAGflow地址:https://github.com/infiniflow/ragflow

打开地址后,现在代码到本地。

图片

02 管理Docker服务

图片

下载后,进行解压,然后进入到docker页面。

图片

执行:docker compose -f docker-compose.yml up -d。根据docker-compose.yml配置文件进行执行。

图片

图片

显示80端口被占用了。Docker的服务,也没有启动。

图片

我们在修改端口,改为86。然后再启动服务。

图片

在重启一遍,发现443端口,也被占用了。在修改443的接口。

图片

图片

那这次没有问题了。

图片

03 查看状态

启动状态现在OK了。

图片

查看日志也没有问题。

图片

04 痛苦的开始了

从.env文件中,我们看到原来默认加载的是slim版本RAGflow。

slim仅包含运行 RAGFlow 必需的组件和依赖。slim是没有embedding模型的。

图片

那只能在重新开始了。

这个时候拉取代码的时候,发现在ragflow的大小是7.54G,但是就是到7.539G就不动了,等了好久都不行,来来回回弄了好几次都不行。白白的浪费时间了。

那后来有又把下载源改为国内的源。swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/infiniflow/ragflow:v0.18.0

这里倒是下载完成了,但是docker服务还是启动不了。

这时候我想要不在重新来,重头开始弄吧。

图片

05 着手解决问题

先把docker停用了,docker-compose down -v,删除所有资源。

查找所有的镜像。docker images | findstr "ragflow"

图片

这个时候发现了,竟然有3个,原来不知道已经下了这么多的镜像了。这个可能就是起不来的原因了。有3个镜像,系统肯定认为是冲突了。

那就把不需要的先删除了。

docker rmi infiniflow/ragflow:v0.18.0-slimdocker rmi swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/infiniflow/ragflow:v0.18.0

在重新执行一次docker compose -f docker-compose.yml up -d。

OK,通过种种的尝试吧,终于搞定!

访问的时候,记着前面改过端口了,这里访问的时候,要记着改啊。

image.png

现在就可以注册使用了!后面继续针对配置和各种应用在进行详细的介绍!

 

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值