一文搞懂大模型推理(FastAPI)

在大模型(如GPT、Qwen、DeepSeek等)的推理场景中,FastAPI 是一个高效、轻量级的Python Web框架,专为构建高性能API设计。它结合了异步编程(async/await)、自动数据验证(基于Pydantic)和强大的依赖注入系统,非常适合处理高并发的大模型推理任务。

图片

一、FastAPI

什么是FastAPI?FastAPI 是一个现代的、快速(高性能)的 Web 框架,专为构建基于 Python 的 API 服务而设计。

FastAPI结合了异步编程、自动数据验证和类型安全的特性,使得开发高性能、可扩展的 API 变得简单高效。

  • 构建 RESTful API:适合开发需要高性能和类型安全的 API 服务。

  • 微服务架构:作为微服务的一部分,提供高效的接口。

  • 机器学习推理服务:结合大模型(如 Hugging Face Transformers)构建推理 API。

  • 实时数据流:通过 WebSocket 或 SSE 实现实时数据推送。

FastAPI

为什么选择FastAPI构建推理服务?FastAPI 是一个基于 Python 的现代 Web 框架,专为构建高性能 API 而设计。以下是选择 FastAPI 构建推理服务的核心原因:

1. 极致性能:异步 + 高并发

  • 异步非阻塞 IO:FastAPI 基于 Starlette 和 Pydantic,原生支持异步编程(async/await),能高效处理大量并发请求,避免线程阻塞。

  • 示例:推理服务需同时响应多个用户请求(如智能客服),FastAPI 的异步特性可显著降低延迟。

  • 性能对比:在基准测试中,FastAPI 的性能接近(甚至超过)Node.js 和 Go,远超传统同步框架(如 Flask、Django)。

2. 开发效率:类型安全 + 自动文档

  • 类型安全:FastAPI 强制使用 Python 类型注解(Type Hints),减少因参数错误导致的运行时崩溃。

  • 自动生成交互式文档:FastAPI 自动生成 Swagger UI 和 ReDoc 文档,便于前后端联调和测试。FastAPI 可直接调用 PyTorch、TensorFlow 等深度学习模型,适合推理场景。

3. 生态兼容:深度学习框架无缝集成

  • 与 PyTorch/TensorFlow 无缝对接:FastAPI 可直接调用 PyTorch、TensorFlow 等深度学习模型,适合推理场景。

  • 示例:使用 transformers 加载模型,通过 FastAPI 提供推理接口。

  • 支持 GPU 加速:FastAPI 可与 CUDA 无缝协作,充分利用 GPU 提升推理速度。

FastAPI Tutorial: Build APIs with Python in Minutes - KDnuggets

二、推理服务

为什么需要推理服务(Inference Service)?推理服务是深度学习模型从训练阶段进入生产环境的关键桥梁,其核心价值在于将训练好的模型转化为实际可用的应用能力。

  • 训练阶段:模型在离线环境中,依赖大量计算资源(如 GPU 集群)进行参数优化,关注模型性能指标(如准确率、损失值)。

  • 推理阶段:模型需在生产环境中实时响应用户请求,关注低延迟、高吞吐量、资源利用率,且需适应动态变化的输入数据。

使用框架(如 FastAPI、Flask)将本地部署模型封装为 RESTful API,提供推理服务。

from fastapi import FastAPI, HTTPExceptionfrom pydantic import BaseModelfrom transformers import pipeline# 初始化FastAPI应用app = FastAPI(title="大模型推理服务", description="基于FastAPI和Hugging Face Transformers")# 加载预训练模型(例如文本生成模型)model = pipeline("text-generation", model="DeepSeek-R1")# 定义请求体模型class TextInput(BaseModel):    prompt: str    max_length: int = 50    num_return_sequences: int = 1# 定义推理接口@app.post("/predict")async def predict(input: TextInput):    try:        # 调用模型进行推理        result = model(input.prompt, max_length=input.max_length, num_return_sequences=input.num_return_sequences)        return {"output": result[0]['generated_text']}    except Exception as e:        raise HTTPException(status_code=500, detail=str(e))

FastAPI如何构建大模型推理服务?FastAPI 通过封装预训练大模型(如 GPT、DeepSeek 等)为可复用类,结合异步接口处理用户请求,利用 uvicorn 启动高性能 ASGI 服务,实现快速构建大模型推理服务

 1. 环境准备

  • 安装依赖:fastapi(核心框架)、uvicorn(ASGI 服务器,用于运行 FastAPI 应用)、transformers(Hugging Face 提供的模型加载工具)、torch(PyTorch 深度学习框架)

pip install fastapi uvicorn transformers torch
  • 模型选择:选择适合任务的大模型(如GPT、Qwen、DeepSeek等),从 Hugging Face 模型库下载或加载本地模型。

     2. 模型加载与封装

    • 加载模型:使用 transformers 加载预训练模型,并将其封装为可复用的类或函数。

    from transformers import AutoModelForCausalLM, AutoTokenizerimport torchclass LargeModel:    def __init__(self, model_name="DeepSeek-R1"):        self.tokenizer = AutoTokenizer.from_pretrained(model_name)        self.model = AutoModelForCausalLM.from_pretrained(model_name).to("cuda" if torch.cuda.is_available() else "cpu")    def generate_response(self, prompt, max_length=50):        inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)        outputs = self.model.generate(inputs["input_ids"], max_length=max_length)        return self.tokenizer.decode(outputs[0], skip_special_tokens=True)

    3.  构建 FastAPI 应用

    • 初始化应用:
    from fastapi import FastAPI, HTTPExceptionapp = FastAPI()model = LargeModel()  # 初始化模型实例
    • 定义推理接口:创建一个 POST 接口,接收用户输入并返回模型推理结果。
    @app.post("/generate/")async def generate_text(prompt: str, max_length: int = 50):    if not prompt.strip():        raise HTTPException(status_code=400, detail="Prompt cannot be empty")    try:        response = model.generate_response(prompt, max_length=max_length)        return {"response": response}    except Exception as e:        raise HTTPException(status_code=500, detail=str(e))

    4.  启动服务

    • 使用 uvicorn 启动 FastAPI 应用:my_app是包含上述代码的 Python 文件名(不含 .py 后缀),--reload 启用自动重载(开发环境使用)。

    uvicorn my_app:app --host 0.0.0.0 --port 8000 --reload

     如何系统的去学习大模型LLM ?

    大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

    事实上,抢你饭碗的不是AI,而是会利用AI的人。

    科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

    与其焦虑……

    不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

    但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

    基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

    在这个版本当中:

    第一您不需要具备任何算法和数学的基础
    第二不要求准备高配置的电脑
    第三不必懂Python等任何编程语言

    您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

    一、LLM大模型经典书籍

    AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

    在这里插入图片描述

    二、640套LLM大模型报告合集

    这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
    在这里插入图片描述

    三、LLM大模型系列视频教程

    在这里插入图片描述

    四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

    在这里插入图片描述

    五、AI产品经理大模型教程

    在这里插入图片描述

    LLM大模型学习路线 

    阶段1:AI大模型时代的基础理解

    • 目标:了解AI大模型的基本概念、发展历程和核心原理。

    • 内容

      • L1.1 人工智能简述与大模型起源
      • L1.2 大模型与通用人工智能
      • L1.3 GPT模型的发展历程
      • L1.4 模型工程
      • L1.4.1 知识大模型
      • L1.4.2 生产大模型
      • L1.4.3 模型工程方法论
      • L1.4.4 模型工程实践
      • L1.5 GPT应用案例

    阶段2:AI大模型API应用开发工程

    • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

    • 内容

      • L2.1 API接口
      • L2.1.1 OpenAI API接口
      • L2.1.2 Python接口接入
      • L2.1.3 BOT工具类框架
      • L2.1.4 代码示例
      • L2.2 Prompt框架
      • L2.3 流水线工程
      • L2.4 总结与展望

    阶段3:AI大模型应用架构实践

    • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

    • 内容

      • L3.1 Agent模型框架
      • L3.2 MetaGPT
      • L3.3 ChatGLM
      • L3.4 LLAMA
      • L3.5 其他大模型介绍

    阶段4:AI大模型私有化部署

    • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

    • 内容

      • L4.1 模型私有化部署概述
      • L4.2 模型私有化部署的关键技术
      • L4.3 模型私有化部署的实施步骤
      • L4.4 模型私有化部署的应用场景

    这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

     

    03-08
    ### FastAPI 框架介绍 FastAPI 是一种现代、快速(高性能)的 Web 框架,用于构建 API 应用程序。它基于 Python 类型提示来提供自动化的数据验证功能,并支持异步编程模式以提高性能[^1]。 ### 使用教程与文档 官方提供了详尽的文档和指南帮助开发者上手使用此框架。可以通过访问官方网站获取最新的安装说明以及详细的开发指导。网址如下:https://fastapi.tiangolo.com/ ### 下载与安装 为了能够顺利运行 FastAPI 应用,在本地环境中需先完成依赖环境搭建工作。推荐通过 pip 工具来进行包管理并执行以下命令完成安装: ```bash pip install fastapi[all] ``` 这将会安装 FastAPI 及其常用扩展库,确保可以方便快捷地创建完整的应用程序[^3]。 ### 示例代码展示 下面给出一段简单的例子用来演示如何定义路由处理函数返回文件资源给客户端请求: ```python from fastapi import FastAPI from fastapi.responses import FileResponse import uvicorn app = FastAPI() @app.get('/user') async def user(): pic = 'favicon.ico' return FileResponse( path=pic, filename='jmeter.ico', status_code=202, headers={'Access-Control-Allow-Origin': '*'} ) if __name__ == '__main__': uvicorn.run('main:app', port=5050, reload=True) ``` 上述代码片段展示了 FastAPI 中最基本的 GET 请求处理器实现方式之一——当接收到 `/user` 路径下的 HTTP GET 方法调用时,则会向浏览器发送指定路径下存储的小图标作为响应内容。
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值