在大模型(如GPT、Qwen、DeepSeek等)的推理场景中,FastAPI 是一个高效、轻量级的Python Web框架,专为构建高性能API设计。它结合了异步编程(async/await)、自动数据验证(基于Pydantic)和强大的依赖注入系统,非常适合处理高并发的大模型推理任务。
一、FastAPI
什么是FastAPI?FastAPI 是一个现代的、快速(高性能)的 Web 框架,专为构建基于 Python 的 API 服务而设计。
FastAPI结合了异步编程、自动数据验证和类型安全的特性,使得开发高性能、可扩展的 API 变得简单高效。
-
构建 RESTful API:适合开发需要高性能和类型安全的 API 服务。
-
微服务架构:作为微服务的一部分,提供高效的接口。
-
机器学习推理服务:结合大模型(如 Hugging Face Transformers)构建推理 API。
-
实时数据流:通过 WebSocket 或 SSE 实现实时数据推送。
为什么选择FastAPI构建推理服务?FastAPI 是一个基于 Python 的现代 Web 框架,专为构建高性能 API 而设计。以下是选择 FastAPI 构建推理服务的核心原因:
1. 极致性能:异步 + 高并发
-
异步非阻塞 IO:FastAPI 基于 Starlette 和 Pydantic,原生支持异步编程(async/await),能高效处理大量并发请求,避免线程阻塞。
-
示例:推理服务需同时响应多个用户请求(如智能客服),FastAPI 的异步特性可显著降低延迟。
-
性能对比:在基准测试中,FastAPI 的性能接近(甚至超过)Node.js 和 Go,远超传统同步框架(如 Flask、Django)。
2. 开发效率:类型安全 + 自动文档
-
类型安全:FastAPI 强制使用 Python 类型注解(Type Hints),减少因参数错误导致的运行时崩溃。
-
自动生成交互式文档:FastAPI 自动生成 Swagger UI 和 ReDoc 文档,便于前后端联调和测试。FastAPI 可直接调用 PyTorch、TensorFlow 等深度学习模型,适合推理场景。
3. 生态兼容:深度学习框架无缝集成
-
与 PyTorch/TensorFlow 无缝对接:FastAPI 可直接调用 PyTorch、TensorFlow 等深度学习模型,适合推理场景。
-
示例:使用
transformers
加载模型,通过 FastAPI 提供推理接口。 -
支持 GPU 加速:FastAPI 可与 CUDA 无缝协作,充分利用 GPU 提升推理速度。
二、推理服务
为什么需要推理服务(Inference Service)?推理服务是深度学习模型从训练阶段进入生产环境的关键桥梁,其核心价值在于将训练好的模型转化为实际可用的应用能力。
-
训练阶段:模型在离线环境中,依赖大量计算资源(如 GPU 集群)进行参数优化,关注模型性能指标(如准确率、损失值)。
-
推理阶段:模型需在生产环境中实时响应用户请求,关注低延迟、高吞吐量、资源利用率,且需适应动态变化的输入数据。
使用框架(如 FastAPI、Flask)将本地部署模型封装为 RESTful API,提供推理服务。
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import pipeline
# 初始化FastAPI应用
app = FastAPI(title="大模型推理服务", description="基于FastAPI和Hugging Face Transformers")
# 加载预训练模型(例如文本生成模型)
model = pipeline("text-generation", model="DeepSeek-R1")
# 定义请求体模型
class TextInput(BaseModel):
prompt: str
max_length: int = 50
num_return_sequences: int = 1
# 定义推理接口
@app.post("/predict")
async def predict(input: TextInput):
try:
# 调用模型进行推理
result = model(input.prompt, max_length=input.max_length, num_return_sequences=input.num_return_sequences)
return {"output": result[0]['generated_text']}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
FastAPI如何构建大模型推理服务?FastAPI 通过封装预训练大模型(如 GPT、DeepSeek 等)为可复用类,结合异步接口处理用户请求,利用 uvicorn
启动高性能 ASGI 服务,实现快速构建大模型推理服务。
1. 环境准备
-
安装依赖:fastapi(核心框架)、uvicorn(ASGI 服务器,用于运行 FastAPI 应用)、transformers(Hugging Face 提供的模型加载工具)、torch(PyTorch 深度学习框架)
pip install fastapi uvicorn transformers torch
-
模型选择:选择适合任务的大模型(如GPT、Qwen、DeepSeek等),从 Hugging Face 模型库下载或加载本地模型。
2. 模型加载与封装
-
加载模型:使用
transformers
加载预训练模型,并将其封装为可复用的类或函数。
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
class LargeModel:
def __init__(self, model_name="DeepSeek-R1"):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(model_name).to("cuda" if torch.cuda.is_available() else "cpu")
def generate_response(self, prompt, max_length=50):
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
outputs = self.model.generate(inputs["input_ids"], max_length=max_length)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
3. 构建 FastAPI 应用
- 初始化应用:
from fastapi import FastAPI, HTTPException
app = FastAPI()
model = LargeModel() # 初始化模型实例
- 定义推理接口:创建一个 POST 接口,接收用户输入并返回模型推理结果。
@app.post("/generate/")
async def generate_text(prompt: str, max_length: int = 50):
if not prompt.strip():
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
try:
response = model.generate_response(prompt, max_length=max_length)
return {"response": response}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
4. 启动服务
-
使用
uvicorn
启动 FastAPI 应用:my_app是包含上述代码的 Python 文件名(不含.py
后缀),--reload 启用自动重载(开发环境使用)。
uvicorn my_app:app --host 0.0.0.0 --port 8000 --reload
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓