在LLM(大型语言模型)时代,数据标注质量直接决定了模型的智能上限。作为开源数据标注领域的标杆工具,Label Studio 凭借其多模态支持能力与高度可定制化的特性,正成为大模型训练中数据工程的基石。
从文本三元组关系抽提到视频对象追踪,从低资源语言的语音标注到医学影像的像素级分割,Label Studio 通过统一的交互界面打破了传统标注工具的场景局限。
一、Label Studio
什么是Label Studio?Label Studio是一个开源的数据标注和数据管理平台,由Human Signal开发并维护。它旨在提供一个直观、灵活且可扩展的平台,用于对各种类型的数据(如文本、图像、音频、视频等)进行高质量的标注工作。
为什么选择Label Studio?它提供了多模态数据支持、丰富的可视化界面以及自定义标注模板的能力,这些特性使得Label Studio成为了一个灵活、高效且适用于多种领域和场景的数据标注平台,能够降低标注门槛,提高标注效率和准确性。
1. 多模态数据支持
-
Label Studio支持文本、图像、语音、视频等多种类型的数据标注,满足不同领域和场景的需求。
2. 丰富的可视化界面
-
提供直观、易用的用户界面,降低数据标注的门槛,提高标注效率。
3. 自定义标注模板
-
内置多种标注模板,同时允许开发者根据具体业务场景自定义模板,提高标注的针对性和准确性。
二、多模态标注
什么是图像标注?Label-Studio为计算机视觉领域提供了强大灵活的图像标注解决方案,支持图像分类、物体检测、语义分割等多种标注任务,提升标注效率和准确性。
-
图像分类:根据图像的语义信息将不同类别的图像区分开来。这是计算机视觉中的基本任务,也是其他高层视觉任务(如图像检测、图像分割等)的基础。
-
物体检测:检测图像上的物体,并使用框(边界框)、多边形、圆形或关键点等形状进行标注。这有助于机器学习模型学习如何识别图像中的特定物体及其位置。
-
语义分割:将图像分割成多个具有特定语义含义的片段。这需要对图像中的每个像素进行分类,实现像素级别的分类和标注。
什么是语音标注?Label-Studio在音频和语音应用方面提供了全面的支持,包括音频分类、说话人分类、情绪识别和音频转录等功能,帮助用户高效地处理和分析音频数据。
-
音频分类:将音频文件根据其内容或特征进行分类。这可以用于多种场景,如音乐分类(摇滚、爵士、古典等)、环境声音识别(街道噪音、雨声、鸟鸣等)等。
-
说话人分类:根据说话者的身份或特征将音频流划分为同质片段。这在语音识别、会议记录、电话客服等场景中非常有用,可以帮助区分不同的说话者或识别特定的语音特征。
-
情绪识别:从音频中标记并识别情绪,如高兴、悲伤、愤怒、平静等。这对于情感分析、心理研究、客户服务等领域具有重要意义。
-
音频转录:将口头交流用文字记录下来的过程。可以与语音识别系统(如NVIDIA NeMo)集成,实现自动或半自动的音频转录功能。
什么是文本标注?Label-Studio在文档处理领域展现出强大的能力,支持大规模分类(最多可达10,000个类别)、命名实体识别、问答系统训练及情绪分析等多种标注任务。
-
文档分类:创建分类项目,上传待分类的文档,并定义分类标签。标注者可以根据文档内容将其归类到相应的类别中。
-
命名实体识别:创建NER项目,并定义需要识别的实体类型(如人名、地名等)。标注者随后会在文本中标注出这些实体,并将其归类到相应的类别中。
-
问答系统:创建问答标注项目,并上传包含问题、答案的文本数据。标注者将问题与答案进行关联,以生成训练数据。
-
情绪分析:创建情绪分析项目,并定义情绪标签(如正面、负面、中性)。标注者随后会阅读文本内容,并根据其表达的情绪倾向进行标注。
什么是时间序列标注?Label-Studio通过一些创造性的方法(如转换数据格式、使用外部工具、自定义标签类型等)来处理时间序列数据的分类、分割和事件识别任务。
-
时间序列分类:将时间序列数据转换为表格形式,其中每一行代表一个时间点,每一列代表不同的特征(如时间序列中的值、时间戳等),为每个时间序列样本分配类别标签。
-
分割时间序列:使用Python等编程语言进行时间序列的分割,并将分割结果(如分割点的索引或时间戳)作为标签导入Label-Studio进行验证或进一步处理。
-
事件识别:使用Label-Studio中的“矩形”或“多边形”标签来标记图表上的事件区域。这通常适用于那些可以通过视觉识别的事件,如峰值、谷值或突然的变化。
什么是视频标注?Label-Studio提供视频分类、对象追踪及关键帧标注功能,助力高效、准确的视频数据标注工作。
-
视频分类:在Label-Studio中创建项目,上传视频并定义分类标签,标注者根据视频内容选择相应标签进行分类。
-
对象追踪:设置视频对象追踪项目,上传视频并配置追踪工具,标注者逐帧或关键帧标记对象位置,实现对象在视频中的追踪。
-
辅助标注:标注者选择视频中的关键帧并精确标注对象位置,可选地结合外部工具进行自动插值以估算非关键帧的对象位置。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓