从模型到大模型,从计算机到人工智能,从甲骨文到元宇宙,科技飞速迭代,文明源远流长。
在第30个“世界读书日”到来之际,精选5本AI大模型方向的图书,以帮助您多维度理解AI大模型的脉络,共探AI时代的核心算法与人文思考。
PS:这些书都已经整理并打包好pdf~ 文末分享
1.《大语言模型:基础与前沿》
熊涛 著
2024年,人民邮电出版社
内容简介:
本书深入阐述了大语言模型的基本概念和算法、研究前沿以及应用,涵盖大语言模型的广泛主题,从基础到前沿,从方法到应用,涉及从方法论到应用场景多方面的内容。首先,本书介绍了人工智能领域的进展和趋势;其次,探讨了语言模型的基本概念和架构、Transformer、预训练目标和解码策略、上下文学习和轻量级微调、稀疏专家模型、检索增强型语言模型、对齐语言模型与人类偏好、减少偏见和有害性以及视觉语言模型等内容;最后,讨论了语言模型对环境的影响。
2.《AIGC原理与实践:零基础学大语言模型、扩散模型和多模态模型》
吴茂贵 著
2024年,机械工业出版社
内容简介:
本书旨在帮助没有任何人工智能技术基础的工程师们全面掌握AIGC的底层技术原理,以及大语言模型、扩散模型和多模态模型的原理与实践。本书的核心价值是,首先为想学习各种大模型的读者打下坚实的技术基础,然后再根据自己的研究方向展开深入的学习,达到事半功倍的效果。
3.《从零构建大模型》 - Sebastian Raschka
内容简介:
书中涵盖了数据处理、分词、注意力机制、Transformer 架构实现、预训练、指令微调(包括 RLHF 的概念)等关键环节。作者是大模型领域的知名科普作家,擅长深入浅出地解释大模型的各种技术原理,也是知名 GitHub 项目 LLMs-from-scratch 的创建者,在“动手”这件事上很有经验。
读这本书,最大的收获不是得到一个多强的模型,而是通过实践,真正理解模型工作的内部机制和各个组件的作用。配套的 GitHub 代码和视频也很有价值。
4. 《大模型技术30讲》 - Sebastian Raschka
内容简介:
如果你想快速了解 AI 相关的一些关键概念和最新进展,查漏补缺,这本书提供了一种高效的方式。它的覆盖面广,可以帮助你建立更全面的知识图谱。
同一位作者,拉施卡,还有一本《大模型技术30讲》。这本书换了个角度,不再是完整构建一个模型,而是采用问答的形式,串起了当前机器学习和 AI 领域的 30 个重要问题。
内容不局限于 LLM,还包括神经网络、计算机视觉、生产部署、模型评估等更广泛的主题,比如自监督学习、小样本学习、多 GPU 训练模式、Transformer 为何成功、如何评测生成模型等等。
5. 《Transformer自然语言处理实战》
内容简介:
理论和基础固然重要,但最终还是要落地应用。这本《Transformer自然语言处理实战》就是一本关注实践的书,尤其侧重于 Hugging Face 生态。
作者来自 Hugging Face,他们详细介绍了如何使用 Transformers 库来解决实际的 NLP 问题,比如文本分类、命名实体识别、文本生成、摘要、问答系统等。书中不仅讲解了 Transformer 的架构(编码器、解码器、注意力),还涉及了模型微调、知识蒸馏、量化、ONNX 推理优化等实用技术,甚至包括了零样本和少样本学习,以及如何从头训练一个模型。
对于想利用现有工具和模型快速开发 AI 应用的开发者来说,这本书非常实用。
现在大模型发展的非常快,花点时间,读几本好书,深入理解一些基础的东西,总归是更有价值的投入。
希望这份书单对你有帮助!
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓