一篇文章了解杰弗里·辛顿

杰弗里·辛顿(Geoffrey Hinton),被誉为“神经网络之父”和“深度学习之父”,是人工智能领域的杰出人物。他的学术生涯和研究贡献在AI领域具有深远的影响。

辛顿于1970年在剑桥大学国王学院获得实验心理学学士学位,随后在爱丁堡大学深造并获得人工智能博士学位。他的博士研究是在Christopher Longuet-Higgins的指导下完成的。在获得博士学位后,辛顿在苏塞克斯大学、加州大学圣地亚哥分校和卡内基梅隆大学等地工作。他还是伦敦大学学院盖茨比慈善基金会计算神经科学部门的创始主任,并目前担任多伦多大学计算机科学系的教授。

辛顿的研究主要集中在神经网络和深度学习领域。他是使用神经网络进行机器学习、记忆、感知和符号处理方法的先驱。辛顿在卡内基梅隆大学任教授期间(1982-1987年),是最早展示使用广义反向传播算法来训练多层神经网络的研究人员之一。此外,他还与David Ackley和Terry Sejnowski共同发明了玻尔兹曼机。他的其他贡献包括分布式表示、时滞神经网络、专家混合、亥姆霍兹机和专家乘积等。

辛顿在2012年在教育平台Coursera上教授神经网络免费在线课程,并于2013年加入Google,当时他的公司DNNresearch Inc.被Google收购。他于2018年获得了计算机领域的最高荣誉——图灵奖。此外,他还曾任谷歌公司副总裁,但在75岁时辞职,以自由地讨论人工智能的危险性。

辛顿的学术背景和家族也颇具特色。他的父亲是英国昆虫学家,母亲是一名教师,他的叔叔是著名的经济学家Colin Clark,而他的高祖父则是著名的逻辑学家George Boole。在这样的家族背景下,辛顿培养出了独立思考能力和坚韧品质。

 

​--------------------------------------------------------------------------------------------------------------------------------------

 作者个人简介:
💐大厂多年AI算法经验,创业中,兼任算法/产品/工程
🍎持续分享aigc干货
❤️提供人工智能相关岗位简历优化和技能辅导服务,欢迎骚扰。
🌺提供aigc产品推广服


微信公众号:
 Ai知识宝典

![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/8e7e17e62f0d47d2b2fbb42de64952ed.png)


关注后,自动发送您一份ai算法学习路线资料,完全免费。

个人微信:
pichaqiu1
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/597170fc65664115a66b9f148cabda42.jpeg#pic_center)

这是我的个人微信,欢迎添加,找我讨论AI相关的内容。

 

### 杰弗里·辛顿在多层感知机上的研究与贡献 #### 对反向传播的关注与发展 杰弗里·辛顿长期致力于探索大脑是否以及如何执行类似于机器学习中的反向传播机制。这一疑问贯穿了其约30年的职业生涯,成为重要的研究方向之一[^1]。反向传播算法是训练多层感知器的关键方法,通过该算法可以有效地调整网络内部各层之间的连接权重。 #### 推动神经网络复兴 尽管在20世纪90年代初期由于计算资源有限和技术瓶颈的存在使得其他模型如支持向量机表现更优,但辛顿及其团队从未放弃对神经网络潜力的信任和支持,在心理学界也保持着坚定的支持者群体[^2]。随着硬件性能提升及大数据时代的到来,基于深度架构下的新型神经网络逐渐展现出超越传统浅层模型的强大能力。 #### 构建复杂结构并优化泛化性能 为了提高人工神经网络处理实际问题的能力,辛顿深入探讨了构建更加复杂的网络拓扑结构的可能性,并提出了多种策略用于增强模型对于未知样本的良好预测效果: - **权值衰减(Weight Decay)**: 添加正则项防止过拟合; - **共享参数(Weight Sharing)**: 减少自由度的同时保持表达力; - **提前终止(Early Stopping)**: 动态监控验证集误差及时停止迭代; - **模型集成(Model Averaging)**: 结合多个独立训练的结果降低方差; - **贝叶斯拟合(Bayesian Fitting)**: 引入概率框架评估不确定性; - **丢弃法(Dropout)**: 随机失活部分节点促进鲁棒特征提取; - **生成预训练(Generative Pre-training)**: 利用无监督方式初始化深层表示[^4]; 这些改进措施不仅促进了理论层面的理解深化,也为现代深度学习的发展奠定了坚实基础。 ```python import numpy as np def apply_weight_decay(weights, decay_rate=0.01): """Apply L2 regularization to weights.""" return weights * (1 - decay_rate) # Example usage of weight decay function during training loop for epoch in range(num_epochs): ... updated_weights = apply_weight_decay(current_weights) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ai知识精灵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值