引言
近年来,图形用户界面(GUI)代理(GUI Agents) 在软件自动化、辅助测试和 AI 驱动的任务执行中扮演着越来越重要的角色。然而,当前的 GUI 代理训练仍然面临 高质量数据稀缺 的核心挑战。现有的方法主要依赖:
-
人工标注数据:人工设计任务,并手动记录交互数据,成本高昂,且扩展性差。
-
基于预定义任务的合成数据:预设 GUI 任务,并利用规则或模型生成轨迹数据,但存在数据多样性不足、泛化性差的问题。
核心问题
-
如何高效构建高质量的 GUI 代理训练数据?
-
如何减少对人工标注和任务预定义的依赖?
-
如何提高 GUI 代理在复杂交互任务中的泛化能力?
OS-Genesis 的贡献
OS-Genesis 提出了一种无监督的 GUI 轨迹数据自动合成框架,其核心思想是:
-
让代理在 GUI 环境中 主动探索,收集交互数据;
-
通过 逆向任务合成(RTS) 推导任务轨迹,而非依赖人工任务定义;
-
通过 轨迹奖励模型(TRM) 评估并优化数据质量;
-
实验表明,OS-Genesis 大幅提升了 GUI