ComfyUI基本原理

它是Stable Diffusion的客户端 GitHub - comfyanonymous/ComfyUI: The most powerful and modular diffusion model GUI, api and backend with a graph/nodes interface. 手册:https://comfyuidoc.com/zh/

Stable Diffusion(稳定扩散模型) 

Clip,UNet,Vae

 CLIP(Contrastive Language–Image Pre-training)对比语言预训练模型,由 OpenAI在2021年 提出,它能够理解并处理图像和文本,通过对它们进行对比学习(contrastive learning)来建立图像和文本之间的关联简单来说Clip模型能把用户输入的文字需求,正确的理解成生成图片的需求

UNet是一种用于图像分割的卷积神经网络架构。可以把输入的‌图片分割成具有一定语义含义的区域块,识别出每个区域块语义类别,最终得到与原图像等大小具有逐像素语义标注的分割图像。还能用于提升图片的细节和质量。

VAE(Variational AutoEncoder 变分自编码器)在Stable Diffusion中对于输入的图片,会先用VAE编码器(VAE Encoder)把像素空间中的图片,压缩为潜空间数据,通过VAE编码器把512x512的图片压缩后变成了64x64的大小,最后再通过VAE解码器(VAE Decoder)把潜空间中的图片返回成像素空间的大小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值